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ABSTRACT 

Within this paper we firstly examine the determination of 

a number of temporal aspects of Electroacoustic Music, 

and their representations. Then various automated 

segmentation methods, for Harrison’s Unsound Objects, 

are investigated. We find the multi-granular approach 

outlined by Lartillot et al., combined with the use of 

MFCCs, is a very efficient and salient segmentation 

strategy for music structured predominantly according to 

timbre. Further, the ‘Contrast’ parameter is both versatile 

and effective in determining the granularity of 

segmentation.  

INTRODUCTION 

Traditional Electroacoustic Music is a studio-based 

artform involving the mixing of field recordings, 

processed field recordings, and synthesized sounds. 

Electroacoustic Music can also include performance of 

live electronic instruments in the form of laptops or other 

electronic devices and/or sensors.  

This paper concentrates on studio-based Electroacoustic 

Music. Being largely an aural tradition, there is no widely 

accepted standard of notation or representation for this 

kind of music, either in the creation of the music, or the 

analysis of this kind of music. Our work seeks to explore 

ways in which signal analysis and/or perceptual models 

can assist in automating some aspects of the analysis of 

Electroacoustic Music in order to augment the aural 

analysis that is the predominant analytical method for this 

style of music. 

Here we set out three recent attempts to automate 

analytical aspects of Electroacoustic Music associated 

with the temporal dimension of the music: 

1. The representation of a measure of the activity 

within a section of an Electroacoustic musical 

piece, and the associated density of musical 

events. 

2. The use of auditory models to derive a 

‘Rhythmogram Representation’ of both short 

and long sections of music within a work. 

3. Segmentation of Electroacoustic Music works, 

over a longer time-span, using the Music 

Information Retrieval Toolbox (MIRToolbox). 

MEASURING SONIC ACTIVITY 

The Problem Defined 

While undertaking a recent analysis of Jonty Harrison’s 

electroacoustic musical work, Unsound Objects [1] the 

initial phase involved analysing the acoustic surface to 

identify sound objects. The next phase required an 

examination of relationships between sound objects, 

giving rise to the following question: What propels the 

work along from moment to moment, section to section, 

scene to scene ? To help answer this question, I observed 

that an increase in sonic activity seems to elicit 

expectation in the listener that an important event is about 

to occur. There is a tension build up that seems to require 

a release the longer the build up goes on. But how can we 

measure something I have called “sonic activity” and, 

even better, how can we display sonic activity easily 

within a work ? Can some form of signal processing be 

used and be represented to assist in the interpretation of 

electroacoustic musical works ? 

The Analytical Process 

With Electroacoustic Music, the first part of an analysis 

can be described as analysing the acoustic surface. This 

involves “segmentation”. Large scale segmentation into 

sections, and then small-scale segmentation of sound 

events from each other. In the analysis of Unsound 

Objects, the spectrogram and audio waveform displays 

were useful for the process. Sound events were annotated 
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on the spectrogram and it was possible to get a time-

stamped listing of the annotation layer, using the program 

Sonic Visualiser [2], which was then imported into a 

spreadsheet program (Microsoft Excel) and printed as a 

listing of all the annotations. The visual screens and 

printed time-stamped sound object listings became the 

data that facilitated detailed identification and 

specification of sound events within the aurally identified 

sections of the work. 

The next phase of the analysis involved moving 

beyond the acoustic surface to examine structures, 

functions and motions between sound events. By 

“zooming out” to look at longer sections of the work, or 

carrying out “time-span reduction”, we can observe 

changing sonic patterns over the course of the work. We 

can look at the different sections and ask questions like: 

What propels the work along from moment to moment, 

section to section, or scene to scene ? To help answer this 

question, we can observe that an increase in sonic activity 

seems to elicit expectation in the listener that an 

important event is about to occur. But how can we 

measure and, even better, display activity within a work ? 

Well the Sonic Visualiser program provides access to a 

suite of plugins of signal analysis. In the Unsound 

Objects article, I postulated that the type of analysis that 

seems to correlate best with sound object activity is a plot 

of “spectral irregularity” versus time. 

There are several different methods for calculating the 

irregularity present within a spectrum, but essentially 

they both give a measure of the degree of variation of the 

successive peaks of the spectrum. Jensen, for example, 

calculates the sum of the square of the difference in 

amplitude between adjoining partials [3]. What I am 

postulating here is that where there is a large variation 

across the spectrum, partial to partial, then this can 

provide us with a depiction of a high degree of activity. 

Figure 1 depicts a spectral irregularity plot for the whole 

of Unsound Objects. 

  

Figure 1 : A spectral irregularity plot for the whole of Unsound Objects. 

 

Figure 2 : Plot of Inter-onset Time vs Time (secs) for the whole of Unsound Objects. 

 

Figure 3. Plot of Inter-onset Rate vs Time (secs) for the whole of Unsound Objects. 



The analysis of Unsound Objects then combined the 

use of spectral irregularity plots with aurally identified 

sections, within the work, to provide a detailed analysis 

of “activity” and to tabulate “sound types” for each 

section. This table showed “activity amount and type” 

and “selected sound object types”. The work actually 

divides into two main halves and after the two halves 

were compared, a summary of sonic archetypes (in the 

form of mimetic archetypes and structural archetypes), 

sound transformations, functional relations, and sonic 

activity were discussed. 

Determining Activity 

The aim of the next study [4] was to seek an alternative 

method to the use of “spectral irregularity” for measuring 

activity in electroacoustic music. 

In essence, activity could be defined as the number of 

sound events in a given time period. Therefore we are 

interested in the onset time of each sound event, and its 

duration. Let’s start with onset time. What signal analysis 

tools exist for determining sound event onset time within 

a musical work ? 

The program Sonic Visualiser, has a number of tools 

within it to perform such an analysis. Aubio onset 

detection (aubio.org) has eight different types which 

all produce a single list of time “instants” (vertical lines 

when plotted) of individual start times. This output can be 

exported to a spreadsheet. Their algorithm can be varied 

to suit the source material. The Queen Mary, University 

of London, in-built Sonic Visualiser onset detection 

algorithm lists three types of onset detector, but these are 

just the one detector with lots of variables: Program; 

Onset detection function type; Onset detection sensitivity; 

Adaptive whitening; Channel options for stereo files; 

Window size; Window increment; and Window shape. 

Output is an “onset detection function” which is a 

probability function of a “note” onset likelihood. 

In developing a method for the detection of onsets in 

Unsound Objects, combining several forms of 

representation was found to provide a more reliable guide 

to data gathering rather than using any single plot. After 

some experimentation, the following combination was 

employed, using the Queen Mary algorithms: 

1. RMS Amplitude. 

2. Smoothed detection function: Time Values 

(displays probability function of onsets). 

3. Note onsets: Time Instants. Program: Soft 

Onsets; Onset detection function: Complex 

Domain; Onset detection sensitivity: 60%; 

Adaptive whitening: Yes. 

This resulted in the onsets (#3 above) aligning pretty 

well with the smoothed detection probability (#2 above), 

but with some low level noise swells failing to trigger the 

onset detector (#3 above). 

The “time instants” data (#3 above) was exported, then 

imported into an Excel spreadsheet in order to be able to 

make further calculations such as “inter-onset times” (the 

time between onsets). Figure 2 shows a plot of Inter-onset 

Time versus Time for the whole of Unsound Objects. Its 

peaks show us where there are long breaks in the work, 

and give a pointer to how the work may be divided up in 

analysis. 

Displaying time instants, however, only progresses us 

part of the way to obtaining a measure of event “activity”. 

Inter-onset “rate” was then calculated and plotted, as 

shown in Figure 3. This provides us with a measure of the 

number of onsets per second, which, in turn, provides a 

guide to the amount of event initiation activity at a 

particular time within the work. 

Implications of Activity Plots 

Determining inter-onset time can give us a plot (Figure 2) 

that is useful in showing the main sections within a work. 

Calculating its reciprocal, inter-onset rate can generate a 

graph that provides some measure of the varying activity 

within an electroacoustic work (Figure 3). If we had 

graphed Figure 3 at the beginning of the analysis, we 

would have observed that the piece does divide into two, 

with little activity between about 390 and 410 seconds. 

The first half begins with three bursts of activity, 

followed by a longer, more active phase of increasing 

activity until the “mid-break”. The second half is more 

continuously active until around 660 seconds, where the 

work has several less active periods, perhaps in 

preparation for the end of the piece. 

In the previous analysis of Unsound Objects, sections 

were first determined aurally, then superimposed over the 

irregularity plot. Comparing the plot of inter-onset rate 

(Figure 3) with the irregularity plot (Figure 1) we can see 

that the piece appears to be much more active in Figure 3 

than Figure 1, especially in the second half. The question 

remains as to which is a better measure of “activity” ? 

The inter-onset rate is probably a more accurate method, 

but it seems exaggerated. This is possibly because it 

doesn’t take into account the loudness of the events. 

Perhaps if this plot (Figure 3) was modified by the RMS 

amplitude, then a more useful picture of “effective 

activity” may emerge. There are also inherent definition 

problems for “iterative” sound events, such as drum rolls 

or machine sounds. Is such a sound type one long event 

or many short events ? This phenomenon may skew the 

events per second data. 

In terms of automating analysis, the inter-onset time 

plot (Figure 2) is very effective in identifying sections in 

a long musical piece, while the inter-onset rate (Figure 3) 
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does provide a measure of active versus inactive 

depiction for various passages in a long piece. 

The next step in this work was to examine activity and 

other temporal measures in other works, including more 

rhythmical pieces. 

RHYTHMOGRAM REPRESENTATIONS 

This section of our paper introduces work that is well 

documented in a paper from the ICMC in 2014 [5], but it 

will be very briefly summarized here to place our 

subsequent work on automated segmentation into a 

context of our ongoing work, and to demonstrate some 

contrasting and varied representations. 

Having investigated activity plots, the aim of the next 

stage of our work was to continue our Segregation, 

Integration, Assimilation, and Meaning (SIAM) approach 

of employing a cognitive model [6], in combination with 

signal processing techniques, to analyse the “raw” audio 

signal, and more specifically, to depict time-related 

phenomena (beat, rhythm, accent, meter, phrase, section, 

motion, stasis, activity, tension, release, etc.). Such 

depictions should assist or enhance aural analysis of, 

what is essentially, an aural art-form. 

After an extensive literature search, the use of the 

“rhythmogram” in the analysis of speech rhythm, and the 

analysis of some tonal music, seemed to fulfill the 

requirement of a cognition-based method that uses an 

audio recording as its input signal to produce a plot of the 

strength of events at certain time points. 

The Rhythmogram 

In my ICMC 2014 paper [5], I provided a thorough 

explanation of the rhythmogram, so I will only briefly 

summarise it here. The framework is documented in Todd 

[7], Todd & Brown [8] and Marr [9]. It makes use of 

quite a traditional auditory model where outer and middle 

ear responses are modelled by filtering, then gammatone 

filters model the basilar membrane. This is followed by 

the Meddis [10] inner hair cell model, which outputs the 

auditory nerve firing probability. It is then summed and 

processed by a multi-scale Gaussian low-pass filter 

system. Peaks are detected, summed and plotted on a time 

constant versus time graph, resulting in a plot known as a 

rhythmogram.
1
 

Figure 4 shows an example rhythmogram for a 

repeating pattern of three short 50ms tones, followed by a 

550ms period of silence, lasting 7 seconds. 

 

                                                           

1 
A version of Silcock’s schematic [11] for Todd and Brown’s model is 

shown in the Hirst (2014) ICMC paper [5]. 

Figure 4. Rhythmogram for a repeating pattern of three short 50ms 

tones, followed by a 550ms period of silence. 

Notable features of the rhythmogram model are: 

 Consideration of sensory memory consisting of 

a short echoic store lasting up to about 200 to 

300 ms and a long echoic store lasting for 

several seconds or more2. 

 Each filter channel detects peaks in the response 

of the short-term memory units. 

 The sum of the peaks is accumulated in a 

simplified model of the long echoic store. 

 An “event” activation is associated with the 

number of memory units that have triggered 

the peak detector and the height of the memory 

unit responses. 

 The hierarchical tree diagrams of Lerdahl and 

Jackendoff [12] have visual similarities to 

rhythmogram plots and so rhythmograms may 

help the researcher with gaining insights into 

the hierarchical structure of a musical work 

under investigation. 

 Not only does the rhythmogram model detect the 

onsets of events, but it can represent other 

rhythmic grouping structures based on inter-

onset times, changes in rhythm, and meter. 

 Changing the analysis parameters allows the 

researcher to “zoom in” or “zoom out”, to 

focus on short-term rhythmic details, or 

provide a representation of an entire section, or 

even a complete work. 

In the case of the final point above, both of these levels 

of focus have been explored, and a summarised 

illustration of both short-term and long-term structures 

will be recapitulated briefly here. 

Analysis of Normandeau’s Electroacoustic works 

This study utilised the MATLAB code written by Guy 

Brown, and adapted by Vincent Aubanel for the LISTA 
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 Todd (1994), pp. 34-35. 



project [13]. The code makes use of the fact that it is 

possible to increase the efficiency of the computation and 

still obtain a useful, meaningful rhythmogram plot by 

using a rectified version of the input signal directly, i.e. 

bypassing the Gammatone filterbank and inner hair cell 

stages
3
.  

The electroacoustic works which were chosen for 

analysis in this study are collectively known as Robert 

Normandeau’s Onomatopoeias Cycle, a cycle of four 

electroacoustic works dedicated to the voice.  The 

Onomatopoeias Cycle consists of four works composed 

between 1991 and 2009, which share a similar structure 

of five sections and are of a similar duration of around 15 

minutes. The works have been documented by Alexa 

Woloshyn [14], and by Normandeau himself, in an 

interview with David Ogborn [15]. 

Two types of analysis were performed. The first is a 

detailed rhythmic analysis of a short segment of one of 

the works. The second analysis zooms out to examine the 

formal structure of three pieces in the cycle and make 

comparisons. 

Detailed analysis of a short segment of Spleen 

The work chosen for detailed rhythmic analysis was the 

second work in the cycle called Spleen [16]. This work
4
 

was chosen as it has a very distinctive beat in various 

sections and it is slightly unusual for an electroacoustic 

work in that respect. Figure 5 shows a rhythmogram for 

the 13.5 second segment of musique et rythme  from 

Normandeau’s Spleen. The X-axis is time (in secs) and 

the Y-axis is filter number (from 1 to 100). For the full 

test parameters see [5]. For now we note that the 

minimum time constant was 10 msec, and the maximum 

time constant was 500 msec for this test. 

Figure 5. Rhythmogram for 13.5” of  musique et rythme from Spleen. 

                                                           

3 
See Todd (1994) “Appendix A.3.3 Input” p. 65. 

4
 The first two mins of musique et rythme can be heard via the link on 

the electrocd site: 
http://www.electrocd.com/en/cat/imed_9920/ 

Labelled as ‘A’ in Figure 5, the tallest spikes 

correspond with a “low thump”, somewhat like a bass 

drum. Using these spikes we could even infer a tempo 

from their regularity. Labelled as ‘B’ and “soft low 

thumps” in figure 5, these softer peaks (B) are 

interspersed between the louder peaks (A) and are 

equidistant. 

To summarise our observations further we can note 

that there is a rhythmic background of regular beats, 

consisting of low thumps, arranged in a hierarchy with 

softer low thumps interspersed. The “tempo” is around 66 

bpm. An implied duple meter results from the loud-soft 

thump beats alternating. 

Against this regular background is a foreground of 

vocal “yow” shouts. Less regular in their placement, the 

shouts become elongated to “yeow”, and then amplitude 

modulated to add colour and variety. Although less 

regular in their placement, the “shouts” always terminate 

on a “thump” beat and thereby reinforce the regular 

pulse. 

There are finer embellishments too, labelled ‘C’ in 

figure 5. This third level of spikes in the rhythmogram 

depicts events that are placed between thump beats and 

have a timbre that is somewhere between a saw and a 

squeaky gate. I’ll describe these events as “aw” sounds, 

and they function as an upbeat to the main thump beat. 

This “one and two and three and four” pattern has a 

motoric effect on the passage. The presence of further, 

shorter, and regular spikes is an indication of more sound 

events which function to embellish the basic pattern. 

Looking at the rhythmogram as a whole, for this 

passage, we can observe that it tells us there are regular 

time points in the sound, there is a hierarchy of emphasis 

in the time points (implying some meter), and a further 

hierarchy in the sense that there is a background of a 

regular part (the thumps) and a foreground of less regular 

vocal shouts. Both the background and the foreground 

have their own embellishments - anticipation of the 

events in the case of the former, and an increase in length 

and use of amplitude modulation, in the case of the latter. 

Comparison of whole works from the cycle 

The second part of this study involved the use of the 

rhythmogram in the representation and analysis of whole 

works. It turns out that the works of Robert Normandeau 

are ideally suited to this application as well. The 

Onomatopoeias Cycle comprises four works, which 

consist of the same basic form. Normandeau used the 

same timeline, but different samples, to create a cycle of 

works. In 1991 he composed the piece Éclats de Voix 

using samples of children’s voices [15]. In 1993 came 

Spleen using the voices of four teenage boys, and in 1995 

Le renard et la rose used the same timeline with adult 
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voices. The final piece in the cycle is Palimpseste, from 

2005, and it is dedicated to old age. The first three works 

were analysed, and rhythmograms were created for them.  

As these works are each about 15 minutes long, a 

different set of analysis parameters was required from the 

analysis of just a 13.5 second excerpt. After a lot of 

experimentation, a suitable set of parameters was found. 

The reader can see [5] for further details, but 

significantly, the minimum time constant was 0.6 

seconds, and the maximum time constant was 30 seconds. 

These parameters represent a “zoomed out” temporal 

view of the three pieces.  

Figure 6 depicts the rhythmogram (Time vs Filter No.) 

for Éclats de Voix for its full duration of around 15 

minutes. The alternating grey and white areas mark out 

the five sections that each piece is divided into - as 

tabulated by Woloshyn in her paper [14]. 

There is not the space within the confines of this paper 

to show the Rhythmograms for all three Normandeau 

works in the cycle. Neither is there the space to go into 

our detailed findings, however we can make some 

indicative comparisons in summary here.  

Comparing Spleen with Le renard we observed 

similarities between the rhythmic profiles of sections 1, 3, 

4 and 5. Comparing the rhythmograms from Éclats de 

voix   and Spleen, there are some similarities of shape, 

especially in sections 3, 4 and 5. Éclats  is more busy 

than Spleen, which is busier than Le renard et la rose. 

Finally, the contrasts become more exaggerated with each 

piece. 

Remarks About Rhythmograms 

This initial use of the rhythmogram in the analysis of 

electroacoustic music has demonstrated that the algorithm 

is capable of displaying the temporal organization of a 

short segment with details that may enhance analysis 

through listening. The algorithm is also flexible, given 

the careful selection of analysis parameters, in the sense 

that it can also be used on entire pieces to help elicit 

information regarding more formal temporal 

organisational aspects, and to make comparisons with 

other works.  

Some of its short-comings are that it can’t solve the 

separation problems of polyphonic music, rhythmograms 

can be awkward to interpret, and they also rely on aural 

analysis. Careful selection of analysis parameters is 

crucial in obtaining meaningful plots. 

 

 

 

Figure 6. Rhythmogram of the whole of Éclats de voix from Normandeau’s Onomatopoeias cycle. 

AUTOMATED SEGMENTATION OF 

ELECTROACOUSTIC MUSIC 

Following on from the investigation of the rhythmogram, 

the work on the entire Normandeau pieces brought up the 

research question of whether the segmentation of entire 

pieces into their sectional constructs could be automated 

somehow.   

Recalling from section 2.2 above, the analysis of 

Unsound Objects began with analysing the acoustic 

surface. This process involves large-scale segmentation 

into sections, and then small-scale segmentation of sound 

events from each other. 

To explore such segmentation, signal analysis routines 

from the MIRToolbox [17] were investigated as they 

represent a collection of auditory perceptual models on 

the one hand, and a modular approach in their selection 

and combination, on the other hand. 



Automated segmentation Model 

For large-scale segmentation, a method for media 

segmentation, proposed by Foote and Cooper [18], was 

used as a model. Their method focuses on the notion of 

self-similarity. Essentially, the spectrum of every time-

segment of an audio work is compared with every other 

time-segment spectrum, and a “similarity matrix” is 

created for the whole work. Foote and Cooper [18] 

describe how the work can be divided into sections from 

the similarity matrix through the construction of a 

“novelty curve”: ‘To detect segment boundaries in the 

audio, a Gaussian-tapered “checkerboard” kernel is 

correlated along the main diagonal of the similarity 

matrix. Peaks in the correlation indicate locally novel 

audio, thus we refer to the correlation as a novelty score’.  

Large peaks detected in the resulting time-indexed 

correlation are then labeled as segment boundaries. 

Foote and Cooper go on to describe how they calculate 

similarity-based clustering to derive the signature of a 

musical piece, but our work has only proceeded as far as 

testing the segmentation technique within the 

electroacoustic musical realm. 

 

Automated Segmentation in Practice Method I 

Figures 7 and 8 demonstrate an example of a “novelty 

curve” and its accompanying segmented audio for the 

first 3 minutes of Harrison’s Unsound Objects [19]. 

Figure 9 shows the sections derived by a human listener 

superimposed over the spectral irregularity plot for the 

same extract of Unsound Objects. Figure 9 is included for 

the sake of comparison between automated methods and 

a human analyst. 

Using this segmentation method, the “kernel size” was 

manipulated to produce section lengths approximating the 

manual analysis. With a kernel size of 1250 samples, 7 

segments were created in the first 3 minutes. 

Comparing figures 8 and 9 we can observe that 

automated segments 1 and 2 (Figure 8) match Section 1 

of the manual analysis pretty well (Figure 9). Similarly 

automated segments 3 and 4 seem to match Section 4, 

automated 5 and 6 line up with Section 3, and automated 

segment 7 matches the manual Section 4. At first glance 

then, this seems quite a useful method of segmentation. 

However, in deriving this representation, a convolution 

computation time of nearly 16 minutes is required for a 

“kernel size” of 1250 samples in the similarity matrix 

(quite a large kernel size). Clearly a more efficient 

method was needed. 

Figure 7. Novelty curve for the first 3 minutes of Unsound Objects – Method I. 

Figure 8. Audio waveform segmented using the novelty curve for the first 3 minutes of Unsound Objects – Method I. 

 



 

Figure 9 : Irregularity plot with section specification notated by a human listener for the first 3 minutes of Unsound Objects. 

 

 

Figure 10 : Novelty curve for the first 3 minutes of Unsound Objects – Method II. 

 

 

Figure 11 : Audio waveform segmented using the novelty curve for the first 3 minutes of Unsound Objects – Method II. 

 

 

Figure 12 : Novelty curve for the first 3 minutes of Unsound Objects – Method II, lower Contrast value. 

 

Figure 13. Audio waveform segmented using the Figure 12 novelty curve – Method II, lower Contrast value. 



Automated Segmentation in Practice Method II 

In Method I, segments are determined from peaks in the 

novelty curve. The novelty curve represents the 

probability along time of the presence of transitions 

between successive states, indicated by peaks, as well as 

their relative importance, indicated by the peak heights. 

For electroacoustic music, we use the spectrum as input 

to the similarity matrix specification routine. The Kernel 

based approach is described by Foote and Cooper [18] as 

follows: ‘Novelty is traditionally computed by comparing 

– through cross-correlation – local configurations along 

the diagonal of the similarity matrix with an ideal 

Gaussian checkerboard kernel.’ That is, every segment of 

the piece is compared with every other segment to look 

for similarities and differences. The sequence of 

operations is: audio in - spectrum - similarity matrix - 

novelty - convolution - peaks - segmented audio display - 

novelty score display. 

Method II makes use of the simpler, multi-granular 

approach outlined by Lartillot, Cereghetti, Eliard & 

Grandjean [20]: ‘For each instant in the piece, novelty is 

assessed by first determining the temporal scale of the 

preceding homogeneous part as well as the degree of 

contrast between that previous part and what just comes 

next. The idea is to estimate the temporal scale of the 

previous ending segment as well as the contrastive 

change before and after the ending of the segment. The 

novelty value is then represented as a combination of the 

temporal scale and the amount of contrast’. 

Using this multi-granular approach, the following 

MIRToolbox command yields the novelty curve shown in 

figure 10 and the segmented audio given in figure 11: 

mirsegment(a,'Novelty','MFCC','Rank',1:10,'Con

trast', 0.6) 

Note that this method also uses the first ten Mel-

Frequency Cepstral Coefficients (MFCCs) in order to 

decrease computation time, and the ‘Contrast’ level is set 

at 0.6. With this ‘Contrast’ value there are 8 segments 

identified in figure 11. These segments correlate quite 

well with the 4 sections shown in Figure 9 in the 

following way : Section 1 (segments 1-3); Section 2 

(segments 4-5); Section 3 (segments 6-7); and Section 4 

(segment 8). 

It is also possible to vary the ‘Contrast’ parameter to 

segment on a shorter-term or longer-term event basis – 

using the same novelty curve. ‘Contrast’ is defined as: ‘A 

given local maximum will be considered as a peak if the 

difference of amplitude with respect to both the previous 

and successive local minima (when they exist) is higher 

than the threshold value specified’.  

For example, by halving the ‘Contrast’ value to 0.3 

(Fig. 12), six additional peaks in the novelty curve are 

included, and the audio is segmented into 14 segments 

(Fig. 13). This provides an effective means to vary 

segmentation from large sections to individual events, 

depending on the ‘Contrast’ value. In our examples, 

segmentation is on the basis of timbre, however pitch, 

rhythm and meter could also be used. 

In contrast to the 16 minutes required to calculate 

segmentation using Method I, Method II is at least four 

times faster and more efficient. 

CONCLUSIONS 

Within this paper we have examined the determination of 

a number of temporal-related analytical aspects of 

Electroacoustic Music, and their representations. We 

calculated onset times, inter-onset times, and inter-onset 

rate for Harrison’s Unsound Objects. We explored the use 

of the “rhythmogram” as a means of  hierarchical 

representation in the works of Normandeau’s 

Onomatopoeias cycle. 

Finally we investigated various automated 

segmentation methods for Unsound Objects. We found 

the multi-granular approach outlined by Lartillot et al, 

using MFCCs, was a very efficient and salient 

segmentation strategy for music structured predominantly 

according to timbre (as opposed to pitch or rhythm). 

Further, the ‘Contrast’ parameter is effective in 

determining the granularity of segmentation – short 

events to long sections. 
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