
ABJAD: AN OPEN-SOURCE SOFTWARE SYSTEM FOR FORMALIZED
SCORE CONTROL

Trevor Bača
Harvard University

trevor.baca@gmail.com

Josiah Wolf Oberholtzer
Harvard University

josiah.oberholtzer@gmail.com

Jeffrey Treviño
Carleton College

jeffrey.trevino@gmail.com

Vı́ctor Adán
Columbia University
vctradn@gmail.com

ABSTRACT

The Abjad API for Formalized Score Control extends the
Python programming language with an open-source, object-
oriented model of common-practice music notation that
enables composers to build scores through the aggregation
of elemental notation objects. A summary of widely used
notation systems’ intended uses motivates a discussion of
system design priorities via examples of system use.

1. INTRODUCTION

Abjad 1 is an open-source software system designed to
help composers build scores in an iterative and incremen-
tal way. Abjad is implemented in the Python 2 program-
ming language as an object-oriented collection of packages,
classes and functions. Composers can visualize their work
as publication-quality notation at all stages of the compo-
sitional process using Abjad’s interface to the LilyPond 3

music notation package. The first versions of Abjad were
implemented in 1997 and the project website is now visited
thousands of times each month. This paper details some
of the most important principles guiding the development
of Abjad and illustrates these with examples of the sys-
tem in use. The priorities outlined here arise in answer to
domain-specific questions of music modeling (What are the
fundamental elements of music notation? Which elements
of music notation should be modeled hierarchically?) as
well as in consideration of the ways in which best practices
taken from software engineering can apply to the develop-
ment of a music software system (How can programming
concepts like iteration, aggregation and encapsulation help
composers as they work?). A background taxonomy mo-
tivates a discussion of design priorities via examples of
system use.

1 http://www.projectabjad.org
2 http://www.python.org
3 http://www.lilypond.org

Copyright: ©2015 Trevor Bača et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution 3.0

Unported License, which permits unrestricted use, distribution, and re-

production in any medium, provided the original author and source are

credited.

2. A TAXONOMY

Many software systems implement models of music but
few of these implement a model of notation. Many music
software systems model higher-level musical entities appar-
ent in the acts of listening and analysis while omitting any
model of the symbols of music notation. Researchers and
musical artists have modeled many such extrasymbolic mu-
sical entities, such as large-scale form and transition [1–5],
texture [6], contrapuntal relationships [7–13], harmonic ten-
sion and resolution [14–16], melody [17, 18], meter [19],
rhythm [20–22], timbre [23–25], temperament [26, 27] and
ornamentation [28, 29]. This work overlaps fruitfully with
analysis tasks because models of listening and cognition
can enable novel methods of high-level musical structures
and transformations, like dramatic direction, tension, and
transition between sections [30].

Software production exists as an organizationally designed
feedback loop between production values and implemen-
tation [31]. It is possible to understand a system by under-
standing the purpose for which it was initially designed.
This purpose can be termed a software system’s genera-
tive task. In the classfication of systems created for use
by artists, this priority yields a dilemma instantly, as anal-
yses that explain a system’s affordances with reference
to intended purpose must contend with the creative use
of technology by artists: a system’s intended uses might
have little or nothing in common with the way in which
the artist finally uses the technology. For this reason, the
notion of generative task is best understood as an explana-
tion for a system’s affordances, with the caveat that a user
can nonetheless work against those affordances to use the
system in novel ways.

While composers working traditionally may allow intu-
ition to substitute for formally defined principles, a com-
puter demands the composer to think formally about mu-
sic [32]. Keeping in mind generative task as an analytical
framework, it is broadly useful to bifurcate a notation sys-
tem’s development into the modeling of composition, on
the one hand, and the modeling of musical notation, on
the other. All systems model both, to greater or lesser
degrees, often engaging in the ambiguous or implicit mod-
eling of composition while focusing more ostensibly on a
model of notation, or focusing on the abstract modeling
of composition without a considered link to a model of

mailto:trevor.baca@gmail.com
mailto:josiah.oberholtzer@gmail.com
mailto:jeffrey.trevino@gmail.com
mailto:vctradn@gmail.com
http://www.projectabjad.org
http://www.python.org
http://www.lilypond.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

notation. Generative task explains a given system’s balance
between computational models of composition and nota-
tion by assuming a link between intended use and system
development.

Many notation systems — such as Finale, Sibelius, SCORE
[33], Igor, Berlioz, Lilypond [34], GUIDO [35] NoteAbil-
ity [36], FOMUS [37, 38] and Nightingale — exist to help
people engrave and format music documents; because these
systems provide functions that operate on notational ele-
ments (i.e., transposition, spacing and playback), hidden
models of common-practice music notation must underly
all of these systems, and each system’s interface constrains
and directs the ways in which users interact with this un-
derlying model of notation. These systems enable users to
engrave and format music without exposing any particular
underlying model of composition, and without requiring, or
even inviting the user to computationally model composi-
tion. Such systems might go so far as to enable scripting,
as in the case of Sibelius’s ManuScript [39] scripting lan-
guage or Lilypond’s embedded Scheme code; although
these systems enable the automation of notational elements,
it remains difficult to model compositional processes and
relationships.

Other systems provide environments specifically for the
modeling of higher-level processes and relationships. Open-
Music [40], PWGL [41] and BACH [42] supply an inter-
face to a model of common-practice notation, as well as a
set of non-common-practice visual interfaces that enables
the user to model composition, in the context of a stand-
alone application and with the aid of the above notation
editors for final engraving and layout via intermediate file
formats. Similarly purposed systems extend text-based pro-
gramming languages rather than existing as stand-alone ap-
plications, such as HMSL’s extension of Forth [43], JMSL’s
extension of Java [44] and Common Music’s extension of
Lisp [45]. Other composition modeling systems, such as
athenaCL [46] and PILE/AC Toolbox [47] provide a vi-
sual interface for the creation of compositional structures
without providing a model of common-practice notation.

Some composers make scores with software systems that
provide neither a model of notation nor a model of com-
position. Graphic layout programs, such as AutoCAD and
Adobe Illustrator, have been designed broadly for the place-
ment and design of graphic elements. While scripting en-
ables automation, composers must model both notation and
composition from scratch, and the symbolic scope of po-
tential automations described in the course of modeling
ensures that composers spend as much time addressing ele-
mental typographical concerns (e.g., accidental collisions)
as would be spent modeling compositional processes and
relationships.

Many models of musical notation have been designed
for purposes of corpus-based computational musicology.
Formats such as DARM, SMDL, HumDrum and Muse-
Data model notation with the generative task of searching
through a large amount of data [48]. Commercial nota-
tion software developers attempted to establish a data inter-
change standard for optical score recognition (NIFF) [49].
Since its release in 2004, MusicXML has become a valid

interchange format for over 160 applications and maintains
a relatively application-agnostic status, as it was designed
with the generative task of acting as an interchange format
between variously-tasked systems [50].

An attempt to survey more comprehensively the history
of object-oriented notation systems for composition, in the
context of the broader history of object-oriented program-
ming, lies beyond the scope of this paper but has recently
been undertaken elsewhere [51].

3. ABJAD BASICS

Abjad is not a stand-alone application. Nor is Abjad a pro-
gramming language. Abjad instead adds a computational
model of music notation to Python, one of the most widely
used programming languages currently available. Abjad’s
design as a standard extension to Python makes hundreds
of print and Web programming resources relevant to com-
posers and further helps to make the global communities
of software developers and composers available to each
other. 4 5 Composers work with Abjad exactly the same as
with any other Python package. In the most common case
this means opening a file, writing code and saving the file:
from abjad import *

def make_nested_tuplet(
tuplet_duration ,
outer_tuplet_proportions ,
inner_tuplet_subdivision_count ,
):
outer_tuplet = Tuplet.from_duration_and_ratio(

tuplet_duration , outer_tuplet_proportions)
inner_tuplet_proportions = \

inner_tuplet_subdivision_count * [1]
last_leaf = outer_tuplet.select_leaves ()[-1]
inspector = inspect_(last_leaf)
right_logical_tie = inspector.get_logical_tie ()
right_logical_tie.to_tuplet(inner_tuplet_proportions)
return outer_tuplet

The classes, functions and other identifiers defined in the
file can then be used in other Python files or in an interactive
session:
>>> rhythmic_staff = Staff(context_name='RhythmicStaff ')
>>> tuplet = make_nested_tuplet ((7, 8), (3, -1, 2), 3)
>>> rhythmic_staff.append(tuplet)
>>> show(rhythmic_staff)

))�)

12:7

3:2

�� �

This paper demonstrates examples in Python’s interactive
console because the console helps distinguish input from
output. Lines preceded by the >>> prompt are passed to
Python for interpretation and any output generated by the
line of code appears immediately after. The example above
creates a tuplet with the tuplet-making function defined ear-
lier and calls Abjad’s top-level show() function to generate

4 See the Python Package Index for extensions to Python for purposes
as diverse as creative writing and aeronautical engineering. The Python
Package Index contains 54,306 packages at the time or writing and is
available at https://pypi.python.org.

5 Abjad is an importable Python library. It can be used in whole or
in part as a component of any Python-compatible system. For example,
Abjad supports IPython Notebook, a Web-based interactive computational
environment combining code execution, text, mathematics, plots and rich
media into a single document. Notational output from Abjad can be
transparently captured and embedded into an IPython Notebook that has
loaded Abjad’s IPython Notebook extension. See http://ipython.org/
notebook.html.

https://pypi.python.org
http://ipython.org/notebook.html
http://ipython.org/notebook.html

a PDF of the result. But note that composers work with Ab-
jad primarily by typing notationally-enabled Python code
into a collection of interrelated files and managing those
files as a project grows to encompass the composition of an
entire score.

4. THE ABJAD OBJECT MODEL

Abjad models musical notation with components, spanners
and indicators. Every notational element in Abjad belongs
to one of these three families. Abjad models notes, rests
and chords as classes that can be added into the container-
like elements of music notation, such as tuplets, measures,
voices, staves and complete scores. Spanners model nota-
tional constructs that cross different levels of hierarchy in
the score tree, such as beams, slurs and glissandi. Indicators
model objects like articulations, dynamics and time signa-
tures that attach to a single component. Composers arrange
components hierarchically into a score tree with spanners
and indicators attached to components in the tree. 6

5. BOTTOM-UP CONSTRUCTION

Abjad lets composers build scores from the bottom up.
When working bottom-up, composers create individual
notes, rests and chords to be grouped into tuplets, measures
or voices that may then be included in even higher-level
containers, such as staves and scores. Abjad affords this
style of component aggregation via a container interface
which derives from Python’s mutable sequence protocol.
Python’s mutable sequence protocol specifies an interface
to list-like objects. Abjad’s container interface implements
a collection of methods which append, extend or insert into
Abjad containers:
>>> outer_tuplet_one = Tuplet ((2, 3), "d ''16 f '8.")
>>> inner_tuplet = Tuplet ((4, 5), "cs ''16 e '16 d'2")
>>> outer_tuplet_one.append(inner_tuplet)
>>> outer_tuplet_two = Tuplet ((4, 5))
>>> outer_tuplet_two.extend("d '8 r16 c '16 bf '16")
>>> tuplets = [outer_tuplet_one , outer_tuplet_two]
>>> upper_staff = Staff(tuplets , name='Upper Staff ')
>>> note_one = Note(10, (3, 16))
>>> upper_staff.append(note_one)
>>> note_two = Note(NamedPitch("fs'"), Duration(1, 16))
>>> upper_staff.append(note_two)
>>> lower_staff = Staff(name='Lower Staff ')
>>> lower_staff.extend("c8 r8 b8 r8 gf8 r4 cs8")
>>> staff_group = StaffGroup ()
>>> staff_group.extend ([upper_staff , lower_staff])
>>> score = Score([staff_group])
>>> show(score)

)
� �

)

)
�
)�)))

5:45:4

3:2

�

�
�

�
��

�) ��

�
)
 �

)

 �

�) �

)
�

�

)

Notes and chords may be initialized with pitches named ac-
cording to either American or European conventions. Notes

6 Abjad chords aggregate note-heads instead of notes. This corrects a
modeling problem sometimes present in other music software systems: if
chords aggregate multiple notes and every note has a stem then how is it
that chords avoid multiple stems? Abjad chords implement the container
interface described below to add and remove note-heads to and from
chords.

and chords may also be initialized with the pitch numbers
of American pitch-class theory or from combinations of
Abjad pitch and duration objects. Unlike many notation
packages, Abjad does not require composers to structure
music into measures. All Abjad containers can hold notes,
rests and chords directly.

Ties, slurs and other spanners attach to score components
via Abjad’s top-level attach() function. The same is true
for articulations, clefs and other indicators. For example,
after selecting the notes, rests and chords from each staff, in-
dividual components and slices of contiguous components
may be selected by their indices within each selection. 7

Indicators and spanners may then be attached to those com-
ponents:
>>> upper_leaves = upper_staff.select_leaves ()
>>> lower_leaves = lower_staff.select_leaves ()
>>> attach(Tie(), upper_leaves [4:6])
>>> attach(Tie(), upper_leaves [-3:-1])
>>> attach(Slur(), upper_leaves [:2])
>>> attach(Slur(), upper_leaves [2:6])
>>> attach(Slur(), upper_leaves [7:])
>>> attach(Articulation('accent '), upper_leaves [0])
>>> attach(Articulation('accent '), upper_leaves [2])
>>> attach(Articulation('accent '), upper_leaves [7])
>>> attach(Clef('bass'), lower_leaves [0])
>>> show(score)

)
� �

)
)
�)

�
�) �)

5:45:4

3:2

�
�

�
�
)��
�) 	

)

�

)��

)�

�) 	
� �

�
)

When does it make sense for composers to work with Abjad
in the bottom-up way outlined here? Instantiating compo-
nents by hand in the way shown above resembles notating
by hand and composers may choose to work bottom-up
when doing the equivalent of sketching in computer code:
when making the first versions of a figure or gesture, when
trying out combinations of small bits of notation or when in-
serting one or two items at a time into a larger structure. For
some composers this may be a regular or even predominant
way of working. Other composers may notice patterns in
their own compositional process when they work bottom-up
and may find ways to formalize these patterns into classes
or functions that generalize their work; the next section
describes some ways composers do this.

6. TOP-DOWN CONSTRUCTION

What are the objects of music composition? For most com-
posers, individual notes, rests and chords constitute only
the necessary means to achieve some larger, musically in-
teresting result. For this reason, a model of composition
needs to describe groups of symbols on the page: notes
taken in sequence to constitute a figure, gesture or melody;

7 Python allows indexing into sequences by both positive and negative
indices. Positive indices count from the beginning of the sequence, starting
at 0, while negative indices count from the end of the sequence, with -1
being the last item in the sequence and -2 the second-to-last. Subsegments
of a sequence may be retrieved by slicing with an optional start and
optional stop index. The slice indicated by [1:-1] would retrieve all of
the items in a sequence starting from the second and going up until, but
not including, the last. The slice indicated by [:3], which omits a start
index, retrieves all items from the sequence up until, but not including, the
fourth.

chords taken in sequence as a progression; attack points
arranged in time as the scaffolding of some larger texture.
These entities, and the others like them, might result from a
flash of compositional intuition that then requires detailed
attention and elaboration.

Abjad invites composers to implement factories as a way
of generalizing and encapsulating parts of one’s own com-
positional process. In this way, composers can extend the
system as they work to implement their own models of com-
position. Abjad also provides a variety of factory functions
and factory classes that exemplify this way of working.
These range from simple note-generating functions, like
make notes(), which combine sequences of pitches and
rhythms to generate patterned selections of notes and rests,
to more complexly-configured maker classes for creating
nuanced rhythmic patterns or entire scores.

As an example, consider the rhythmmakertools package
included with Abjad. The classes provided in this package
are factory classes which, once configured, can be called
like functions to inscribe rhythms into a series of beats or
other time divisions. The example below integrates config-
urable patterns of durations, tupletting and silences:

>>> burnish_specifier = rhythmmakertools.BurnishSpecifier(
... left_classes =(Rest , Note),
... left_counts =(1,),
...)
>>> talea = rhythmmakertools.Talea(
... counts =(1, 2, 3),
... denominator =16,
...)
>>> tie_specifier = rhythmmakertools.TieSpecifier(
... tie_across_divisions=True ,
...)
>>> rhythm_maker = rhythmmakertools.TaleaRhythmMaker(
... burnish_specifier=burnish_specifier ,
... extra_counts_per_division =(0, 1, 1),
... talea=talea ,
... tie_specifier=tie_specifier ,
...)
>>> divisions = [(3, 8), (5, 16), (1, 4), (3, 16)]
>>> show(rhythm_maker , divisions=divisions)

)) �))

6:5 5:4

))

16
5

)�

4
1

)�

8
3

�)

16
3

)

Once instantiated, factory classes like this can be used over
and over again with different input:

>>> rhythmic_score = Score()
>>> for i in range (8):
... selections = rhythm_maker(divisions , seeds=i)
... measure = Measure ((9, 8), selections)
... staff = Staff(context_name='RhythmicStaff ')
... staff.append(measure)
... rhythmic_score.append(staff)
... divisions = sequencetools.rotate_sequence(
... divisions , 1)
...
>>> show(rhythmic_score)

)

)

�

)

) �

)

)

)

)

)

)

)

) �

)

)

)

)

)

)

�

)

)

)

) �

)

)

)

) �

)

)

�

�

5:4

5:4

4:3

4:3

6:5

)

�

�
7:6

6:5

4:3

7:6

5:4

4:3

7:6

6:5

5:4

4:3

4:3

)

)

�

)

�

�

� �

)

) �

)

)

)

)

)

)

)

�

) �

)

)

)

�

)

)

)

)

)

)

)

)

�

) �

)

)

)

89

�89

)89

�89

)89

�89

)89

�

7:6

6:5

5:4

5:4

4:3

�89

)

�

�

))

)

)

�

)

�

)

�

)

)

)

�

�

�

)

)

)

)

)

)

)

)

)

)
�
�)

)

7. SELECTING OBJECTS IN THE SCORE

Abjad allows composers to select and operate on collections
of objects in a score. Composers can select objects in
several ways: by name, numeric indices or iteration. A
single operation, such as transposing pitches or attaching
articulations, can then be mapped onto the entirety of a
selection.

Consider the two-staff score created earlier. Because both
staves were given explicit names, the upper staff can be
selected by name:
>>> upper_staff = score['Upper Staff ']
>>> show(upper_staff)

)
� ��)�

�

3:2

5:4 5:4

�)
�))�)�� �))�) �

Using numeric indices, the lower staff can be selected by
indexing the second child of the first child of the score:
>>> lower_staff = score [0][1]
>>> show(lower_staff)

ë
�� ��

ë
��

�
�� � �

�
�

The top-level iterate() function exposes Abjad’s score
iteration interface. This interface provides a collection of
methods for iterating the components in a score in different
ways. For example, all notes can be selected from a single
staff:
>>> for note in iterate(lower_staff). by_class(Note):
... attach(Articulation('staccato '), note)
...
>>> show(score)

� �

�
�
��

�
� �

�
��

5:45:4

3:2

�
�

�
�
���

� 	

�

�
���
 �

� � �
� 	

� �
�

��

Groups of tied notes can be selected from an entire score.
Abjad uses the term logical tie to refer to the collection of

notes or chords joined together by consecutive ties. The
‘logical’ qualifier points to the fact that Abjad considers
untied notes and untied chords as logical ties of length 1,
which makes it possible to select untied notes and chords
together with tied notes and chords in a single method call:

>>> for logical_tie in iterate(score). by_logical_tie ():
... if 1 < len(logical_tie):
... attach(Fermata(), logical_tie.tail)
... for note in logical_tie:
... override(note). note_head.style = 'cross '
...
>>> show(score)

ë �
�
�

��
��

�
� �

��
�

5:45:4

3:2

ë
�

	

��
�

�
�
�
�

��
�

�

���� �

��� �
� �

� �
��

8. PROJECT TESTING AND MAINTENANCE

Abjad has benefited enormously from programming best
practices developed by the open-source community. As
described previously, the extension of an existing language
informs the project as a first principle. The following other
development practices from the open-source community
have also positively impacted the project and might be
helpful in the development of other music software systems.

The literature investigated in preparing this report remains
overwhelmingly silent on questions of software testing.
None of the sources cited in this article reference software
test methodologies. The same appears to be true for the
larger list of sources included in [51]. 8 Why should this
be the case? One possibility is that authors of music soft-
ware systems have, in fact, availed themselves of important
improvements in software test methods developed over the
previous decades but have, for whatever reasons, remained
quiet on the matter in the publication record. Perhaps the
culture of software best practices now widely followed
in the open-source community simply has not yet arrived
in the field of music software systems development (and
especially in the development of systems designed for non-
commercial applications).

The use of automated regression testing in Abjad’s de-
velopment makes apparent the way in which tests encour-
age efficient development and robust project continuance.
Abjad comprises an automated battery of 9,119 unit tests
and 8,528 documentation tests. Unit tests are executed by
pytest. 9 Documentation tests are executed by the doctest
module included in Python’s standard library. Parameter-
ized tests ensure that different classes implement similar
behaviors in a consistent way. Developers run the entire
battery of tests at the start of every development session.
No new features are accepted as part of the Abjad codebase
without tests authored to document changes to the system.
Continuous integration testing is handled by Travis CI 10

8 AthenaCL [46] and Music21 [52] are important exceptions. Both
projects are implemented in Python and both projects feature approaches
to testing in line with those outlined here.

9 http://pytest.org
10 https://travis-ci.org

to ensure that all tests pass after every commit from every
core developer and newcomer to the project alike.

The presence of automated regression tests acts as an in-
centive to new contributors to the system (who can test
whether proposed changes to the system work correctly
with existing features) and greatly increases the rate at
which experienced developers can refactor the system dur-
ing new feature development. Abjad currently comprises
about 178,000 lines of code. The Abjad repository, hosted
on GitHub, 11 lists more than 8.7 million lines of code com-
mitted since the start of the project. This refactor ratio of
about 50:1 means that each line of code in the Abjad code-
base has been rewritten dozens of times. The freedom to
refactor at this rate is possible only because of the approach
to automated regression testing Abjad has borrowed from
the larger open-source community.

Testing benefits project continuance when the original
developers of a music software system can no longer de-
velop the system. Automated regression tests help make
possible a changing of the guard from one set of developers
to another. Automated tests serve as a type of functional
specification of how a software system should behave after
revision. While automated tests alone will not ensure the
continued development of any software system, adherence
to the testing practices of the open-source community con-
stitutes the most effective hedge available to music software
systems developers to fend against project abandonment in
the medium and long term.

9. DISCUSSION & FUTURE WORK

The design and development priorities for Abjad outlined
here derive from the fact that the developers of Abjad are
all composers who use the system to make their own scores.
Abjad is not implemented for the type of music information
storage and retrieval functions that constitute an important
part of musicology-oriented music software systems. Nor is
Abjad designed for use in real-time contexts of performance
or synthesis. Abjad is designed as a composers’ toolkit for
the formalized control of music notation and for modeling
the musical ideas that composers use notation to explore
and represent. For example, figure 1 shows a one-page ex-
cerpt from a score constructed entirely with tools extending
Abjad and typeset with LilyPond. Although Abjad embeds
well in other music software systems, future work planned
for Abjad itself does not prioritize file format conversion,
audio synthesis, real-time applications or graphic user inter-
face integration. Future work will instead extend Abjad for
object-oriented control over parts of the document prepara-
tion process required of complex scores with many parts.
Future work will also extend and reinforce the inventory of
factory classes and factory functions introduced in this re-
port. We hope this will encourage composers working with
Abjad to transition from working with lower-level symbols
of music notation to modeling higher-level ideas native to
one’s own language of composition.

11 https://github.com/Abjad/abjad

http://pytest.org
https://travis-ci.org
https://github.com/Abjad/abjad

!!

1

1

ppp

1

1

p

1

1

ORD.

4

5

"

mf
#

$

%

%

%

%

#

mp

&
3

5

S.P.

4
2

! "

$

3

5

''

''

(
ppp

"
1

1

S.T.

)

#
ppp

&

! "

p

&
4

5

%

% 2

5

M.S.T.

$
! "

ppp

1

1

'' #
p

&
4

5

ORD.

&
2

5

****************************+

****************+

*******+

4:5

**+

*******************+

****************************+

***********************************+

****************+

4

5

!!

%

%

,,

)

! "''

3

5

%

%

#
p

"
1

1

S.T.

1

1

8
3

'
$

#
ppp

1

1

#
ppp

"

#
p

&
4

5

#

!! ! ") ! "

)

''

) ! "

)

''

-

.

-

.

Va. 2

/

0

Va. 1

93

******+

****************+

M.S.T.

/

0

! "

)

)

'

M.S.T.

&
4

5

1

1

(
p

"
1

1

' ! "

#
mp

&
3

5

S.P.

%

1

1

%

%

%

ppp

)

%

%

#
mf

4

5

''
$

"
4

5

M.S.P

8
6

! "!!

#

"
1

1

#
p

&
4

5

)

''

! "

2

5

p
! "

$
#

$

#$

#

#% $#

#% #$%

#

##

$$

$

))))

))))

))))

))))

p

"
4

5

! "

22

4

5

"

p

)

3

5

&! "

#
&

'('(

! "# ! "

1

1

"

#

3

5

#

$

! "

#
&

'('(

! "#
&

'('(

! "

4

5

ppp
#

3

5

&

ppp
'('(

! "#
&

'('(****************+

************************+

ORD.

************+ 22

! "

1

1

"

p

#
&

4:5

*********************+

4:5

ORD.S.P.ORD.S.T.

*******+

3:2

ORD.S.P.

6:5

4:5

**********************+

ORD.

****************+

4

5

8
3

4

5

"

ppp
#

0

1

&

! "

! "

$
ppp

#

)

)

ORD.

4

5

"

mf
#

%

%$
!!

4

5

ppp

$
,,

3

5

&

''

3

5

&

mp
#

M.S.P

98

8
3

.

-

.

- ! "#

Va. 1

/

0

Va. 2

/

0
! "

$

#
&

'('(

! "

%

%

1

1

"

#

%

%

G Selidor (iii)

!
 = 72

8
5

%

%

4

5

"

p

#

1

1

3

5

ORD.

0

1

&

p
! "

! "

)

$
''

"
4

5

4

5

#

#''

&
)

)

&

&

#

&

%

%

)) &
)&

'(

&
#! "

$
$

'('(

2
&
#2 '

'(

$
$
! "

0

1

&

#

! "#

ppp

&
3

5

! "

4

5

"

ppp

#

$

8
6

4

5

p

#

3

5

p

#

! "

$

#

'

#
&

'('(

$
$
! "

4

5

"

! "

''

1

1

"

#

3

5

&

p

#

4

5

ppp
****************+

**********************+ ************+

*******+

)

#

)

4:5

***********************+

4:5

M.S.P

3:2

*******+

M.S.PORD.

S.P.ORD. ORD.

ORD.

4:5

4:53:2

************+ *******+

ORD.S.P.

$

%

%

3

5

ppp

4

5

"

)

4
3

4

5

"

#

%

%

! "
3

5

p

$
! "

4

5

"

#
'(

$
$
! " #
&

'('(

$

&

'('(

! "

4

5

#

''

! "

#

$

! "

$
!!

#
&

'(

1

1

"

p
#

************+

M.S.PORD.

6:5

6:5

-

.

-

.

103

/

0

Va. 1

ORD.S.P.

/

0

Va. 2

3

5

&

! "

$
! "$

$
! "

3

5

&

#

! "

'('(

&
#

! "'''

! "

#
$

#
ppp

4

5

"

'('(

&
#! "

$
$

'('(

!!

! "

#
&

#

! "

#

ppp

&
0

1

#

p

4

5

8
5

#

&
3

5

"
4

5

! "

)& &

)

)

$ &
& $&#*) &)

&

&

$

 8

Figure 1. Page 8 from Josiah Wolf Oberholtzer’s Invisible Cities (ii): Armilla for two violas (2015), created with tools
extending Abjad. Source for this score is available at https://github.com/josiah-wolf-oberholtzer/armilla.

https://github.com/josiah-wolf-oberholtzer/armilla

Acknowledgements

Our sincere thanks go out to all of Abjad’s users and devel-
opers for their comments and contributions to the code. We
would also like to thank everyone behind the LilyPond and
Python projects, as well as the wider open-source commu-
nity, for fostering the tools that make Abjad possible.

10. REFERENCES

[1] L. Polansky, M. McKinney, and B. E.-A. M. Studio,
“Morphological Mutation Functions,” in Proceedings of
the International Computer Music Conference, 1991,
pp. 234–41.

[2] Y. Uno and R. Huebscher, “Temporal-Gestalt
Segmentation-Extensions for Compound Monophonic
and Simple Polyphonic Musical Contexts: Application
to Works by Cage, Boulez, Babbitt, Xenakis and Ligeti,”
in Proceedings of the International Computer Music
Conference, 1994, p. 7.

[3] C. Dobrian, “Algorithmic Generation of Temporal
Forms: Hierarchical Organization of Stasis and Tran-
sition,” in Proceedings of the International Computer
Music Conference, 1995.

[4] S. Abrams, D. V. Oppenheim, D. Pazel, J. Wright et al.,
“Higher-level Composition Control in Music Sketcher:
Modifiers and Smart Harmony,” in Proceedings of the
International Computer Music Conference, 1999.

[5] M.-J. Yoo and I.-K. Lee, “Musical Tension Curves and
its Applications,” Proceedings of International Com-
puter Music Conference, 2006.

[6] S. Horenstein, “Understanding Supersaturation : A
Musical Phenomenon Affecting Perceived Time,” Pro-
ceedings of International Computer Music Conference,
2004.

[7] G. Boenn, M. Brain, M. De Vos, and et. al., “Anton:
Composing Logic and Logic Composing,” in Logic Pro-
gramming and Nonmonotonic Reasoning. Springer,
2009, pp. 542–547.

[8] M. E. Bell, “A MAX Counterpoint Generator for Simu-
lating Stylistic Traits of Stravinsky, Bartok, and Other
Composers,” Proceedings of International Computer
Music Conference, 1995.

[9] M. Farbood and B. Schoner, “Analysis and Synthesis
of Palestrina-style Counterpoint using Markov Chains,”
in Proceedings of the International Computer Music
Conference, 2001, pp. 471–474.

[10] D. Cope, “Computer Analysis and Computation Using
Atonal Voice-Leading Techniques,” Perspectives of
New Music, vol. 40, no. 1, pp. 121–146, 2002. [Online].
Available: http://www.jstor.org/stable/833550

[11] M. Laurson and M. Kuuskankare, “Extensible Con-
straint Syntax Through Score Accessors,” in Journées
d’Informatique Musicale, 2005, pp. 27–32.

[12] L. Polansky, A. Barnett, and M. Winter, “A Few More
Words About James Tenney: Dissonant Counterpoint
and Statistical Feedback,” Journal of Mathematics and
Music, vol. 5, no. 2, pp. 63–82, 2011.

[13] K. Ebcioglu, “Computer Counterpoint,” Proceedings of
International Computer Music Conference, 1980.

[14] A. F. Melo and G. Wiggins, “A Connection-
ist Approach to Driving Chord Progressions
Using Tension,” in Proceedings of the AISB,
vol. 3, no. 1988, 2003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.115.9086&rep=rep1&type=pdf

[15] G. Wiggins, “Automated Generation of Musical
Harmony: What’s Missing?” in Proceedings of the
International Joint Conference on Artificial Intelligence,
1999. [Online]. Available: http://www.doc.gold.ac.
uk/∼mas02gw/papers/IJCAI99b.pdf

[16] C. D. Foster, “A Consonance Dissonance Algorithm
for Intervals,” Proceedings of International Computer
Music Conference, 1995.

[17] D. Hornel, “SYSTHEMA - Analysis and Automatic
Synthesis of Classical Themes,” Proceedings of Inter-
national Computer Music Conference, 1993.

[18] M. Smith and S. Holland, “An AI Tool for Analysis and
Generation of Melodies,” Proceedings of International
Computer Music Conference, 1992.

[19] M. Hamanaka, K. Hirata, and S. Tojo, “Automatic Gen-
eration of Metrical Structure Based on GTTM,” Pro-
ceedings of International Computer Music Conference,
2005.

[20] P. Nauert, “Division- and Addition-based Mod-
els of Rhythm in a Computer-Assisted Composi-
tion System,” Computer Music Journal, vol. 31,
no. 4, pp. 59–70, Dec. 2007. [Online]. Avail-
able: http://www.mitpressjournals.org/doi/abs/
10.1162/comj.2007.31.4.59

[21] B. Degazio, “A Computer-based Editor for Lerdahl
and Jackendoff’s Rhythmic Structures,” Proceedings
of International Computer Music Conference, 1996.

[22] N. Collins, “A Microtonal Tempo Canon Generator
After Nancarrow and Jaffe,” in Proceedings of the Inter-
national Computer Music Conference, 2003.

[23] I. Xenakis, “More Thorough Stochastic Music,” Pro-
ceedings of International Computer Music Conference,
1991.

[24] D. P. Creasey, D. M. Howard, and A. M. Tyrrell, “The
Timbral Object - An Alternative Route to the Control of
Timbre Space,” Proceedings of International Computer
Music Conference, 1996.

[25] N. Osaka, “Toward Construction of a Timbre Theory
for Music Composition Composition,” Proceedings of
International Computer Music Conference, 2004.

http://www.jstor.org/stable/833550
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9086&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9086&rep=rep1&type=pdf
http://www.doc.gold.ac.uk/~mas02gw/papers/IJCAI99b.pdf
http://www.doc.gold.ac.uk/~mas02gw/papers/IJCAI99b.pdf
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.4.59
http://www.mitpressjournals.org/doi/abs/10.1162/comj.2007.31.4.59

[26] J. C. Seymour, “Computer-assisted Composition in
Equal Tunings: Tonal Congnition and the Thirteen Tone
March,” Proceedings of International Computer Music
Conference, 2007.

[27] A. Gräf, “On Musical Scale Rationalization,” Pro-
ceedings of International Computer Music Conference,
2006.

[28] C. Ariza, “Ornament as Data Structure : An Algorithmic
Model Based on Micro-Rhythms of Csángó Laments
and Funeral Music Music of the Csángó,” Proceedings
of International Computer Music Conference, 2003.

[29] W. Chico-Töpfer, “AVA: An Experimental,
Grammar/Case-based Composition System to
Variate Music Automatically Through the Generation
of Scheme Series,” Proceedings of International
Computer Music Conference, 1998.

[30] N. Collins, “Musical Form and Algorithmic Composi-
tion,” Contemporary Music Review, vol. 28, no. 1, pp.
103–114, Feb. 2009.

[31] J.-C. Derniame, B. A. Kaba, and D. Wastell, Software
Process: Principles, Methodology, and Technology.
Springer, 1999.

[32] I. Xenakis, Formalized Music: Thought and Mathemat-
ics in Composition. Pendragon Press, 1992.

[33] L. Smith, “SCORE- A Musician’s Approach to Com-
puter Music,” Journal of the Audio Engineering Society,
vol. 20, no. 1, pp. 7–14, 1972.

[34] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, A
System for Automated Music Engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics (XIV
CIM 2003). Citeseer, 2003, pp. 167–172.

[35] H. H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Notation Format- A Novel Approach for Ade-
quatly Representing Score-level Music,” Proceedings
of International Computer Music Conference, 1998.

[36] K. Hamel, “NoteAbility Reference Manual,” 1997.

[37] D. Psenicka, “FOMUS , a Music Notation Software
Package for Computer Music Composers,” Proceedings
of the International Computer Music Conference, pp.
75–78, 2006.

[38] ——, “Automated Score Generation with FOMUS,”
Proceedings of the International Computer Music Con-
ference, pp. 69–72, 2009.

[39] AVID. Plugins for Sibelius. [Online]. Avail-
able: http://www.sibelius.com/download/plugins/
index.html?help=write

[40] G. Assayag, C. Rueda, M. Laurson, C. Agon,
and O. Delerue, “Computer-Assisted Composition at
IRCAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, pp. pp. 59–72, 1999.
[Online]. Available: http://www.jstor.org/stable/
3681240

[41] M. Laurson, M. Kuuskankare, and V. Norilo, “An
Overview of PWGL, a Visual Programming Environ-
ment for Music,” Computer Music Journal, vol. 33,
no. 1, pp. 19–31, 2009.

[42] A. Agostini and D. Ghisi, “Real-time Computer-aided
Composition with BACH,” Contemporary Music Re-
view, vol. 32, no. 1, pp. 41–48, 2013.

[43] L. Polansky, “HMSL (Hierarchical Music Specification
Language): A Theoretical Overview,” Perspectives of
New Music, vol. 28, no. 2, 1990.

[44] N. Didkovsky and P. Burk, “Java Music Specification
Language, an introduction and overview,” in Proceed-
ings of the International Computer Music Conference,
2001, pp. 123–126.

[45] H. Taube, “Common Music: A Music Composition Lan-
guage in Common Lisp and CLOS,” Computer Music
Journal, pp. 21–32, 1991.

[46] C. Ariza, “An Open Design for Computer-aided Algo-
rithmic Composition: athenaCL,” Ph.D. dissertation,
New York University, 2005. [Online]. Available: http:
//books.google.com/books?hl=en&lr=&id=
XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+
Open+Design+for+Computer-Aided+Algorithmic+
Composition:+athenacl&ots=bHedXym8ZP&
sig=9i2RQINqIVr2Y7sjxeD9e74myxA

[47] P. Berg, “PILE - A Language for Sound Synthesis,”
Computer Music Journal, vol. 3, no. 1, pp. 30–41, 1979.
[Online]. Available: http://www.jstor.org/stable/
3679754

[48] E. Selfridge-Field, Beyond MIDI: The Handbook of
Musical Codes. The MIT Press, 1997.

[49] NIFF Consortium, et al., “NIFF 6a: Notation Inter-
change File Format,” NIFF Consortium, Tech. Rep.,
1995.

[50] M. Good, “MusicXML for Notation and Analysis,” in
The Virtual Score: Representation, Retrieval, Restora-
tion, ser. Computing in Musicology, W. B. Hewlett and
E. Selfridge-Field, Eds. MIT Press, 2001, no. 12, pp.
113–124.

[51] J. R. Trevino, “Compositional and Analytic Applica-
tions of Automated Music Notation via Object-oriented
Programming,” Ph.D. dissertation, University of Cali-
fornia, San Diego, 2013.

[52] C. Ariza and M. Cuthbert, “Modeling Beats, Accents,
Beams, and Time Signatures Hierarchically with
Music21 Meter Objects,” in Proceedings of the
International Computer Music Conference, 2010.
[Online]. Available: http://web.mit.edu/music21/
papers/2010MeterObjects.pdf

http://www.sibelius.com/download/plugins/index.html?help=write
http://www.sibelius.com/download/plugins/index.html?help=write
http://www.jstor.org/stable/3681240
http://www.jstor.org/stable/3681240
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://books.google.com/books?hl=en&lr=&id=XukW-mq76mcC&oi=fnd&pg=PR3&dq=An+Open+Design+for+Computer-Aided+Algorithmic+Composition:+athenacl&ots=bHedXym8ZP&sig=9i2RQINqIVr2Y7sjxeD9e74myxA
http://www.jstor.org/stable/3679754
http://www.jstor.org/stable/3679754
http://web.mit.edu/music21/papers/2010MeterObjects.pdf
http://web.mit.edu/music21/papers/2010MeterObjects.pdf

	 1. Introduction
	 2. A Taxonomy
	 3. Abjad basics
	 4. The Abjad object model
	 5. Bottom-up construction
	 6. Top-down construction
	 7. Selecting Objects in the Score
	 8. Project testing and maintenance
	 9. Discussion & Future work
	 10. References

