SVG TO OSC TRANSCODING: TOWARDS A PLATFORM FOR
NOTATIONAL PRAXIS AND ELECTRONIC PERFORMANCE

Rama Gottfried
Center for New Music and Audio Technolgies (CNMAT)
University of California, Berkeley

rama.gottfried@berkeley.edu

ABSTRACT

In this paper we present a case study for the creation of an
open system for graphically developing symbolic notation
which can function both as professional quality print or
online documentation, as well as a computer performable
score in electro-acoustic music and other computer aided
contexts. Leveraging Adobe Illustrator’s graphic design
tools and support for the Scalable Vector Graphics (SVG)
file format, the study shows that SVG, being based on Ex-
tensible Markup Language (XML), can be similarly used
In the
study, OpenSoundControl (OSC) serves as middleware used

as a tree-based container for score information.

to interpret the SVG representation and finally realize this
interpretation in the intended media context (electronic mu-
sic, spatial audio, sound art, kinetic art, video, etc.). The
paper discusses how this interpretive layer is made pos-
sible through the separation of visual representation from
the act of rendering, and describes details of the current
implementation, and outlines future developments for the
project.

1. BACKGROUND

The twentieth century was a time full of notational exper-
imentation and development. Due to the explosion of per-
formance technologies, new materials entered the scope of
composition that previously were considered outside the
realm of “music.” [1] Works dealing with complex rhyth-
mic and microtonal inflections, chance, and stochastic pro-
cesses each exposed new compositional parameters that
where not easily addressed by traditional music notation.
Developments in purely mechanical music production such
as piano rolls, automata, optical synthesizers, and eventu-
ally digital audio workstations allowed composers to pre-
Copyright: (©2015 Rama Gottfried et al. This is an open-access
article distributed under the terms of the Creative Commons
Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

cisely sculpt the resulting sounds by manipulating the many
parameters of sound creation. [2, 3]

In some works, such as Stockhausen’s Plus-Minus, Feld-
man’s Projection series, Riley’s In C, and others ', the
score is designed as a description of structural processes
which require the performer to interpret the instructions
and create their own performance score. In other works,
such as Cardew’s Treatise, the score contains no instruc-
tion, but only graphic symbols to be interpreted by the
performer. Some, like Lachenmann, began to draw from
tablature notation where the score describes the actions of
the performers on their instruments rather than the results,
while others like Kagel began to compose physical spatial
movements. Similarly, in the dance world choreographers
were composing movements based on the work of Laban
and others [4].

Key to all of the above works is that they were all con-
ceived and printed on paper and were designed to be read
and performed by humans. Thus, the symbolic informa-
tion contained in them is expressive to a human intelli-
gence, who then performs their interpretation with an in-
strument or physical action. In the fields of electronic mu-
sic, kinetic, video, and other types of mechanical and dig-
ital arts, the output of the instrument is via an electron-
ically mediated system, or rendering, which often is un-
notated [5]. With the ubiquity of powerful personal com-
puters we now have immense rendering capabilities at our
fingertips, along with many specialized tools to control
these various media. These systems provide new ways for
artists to incorporate many new types of media into their
practice that were not previously available, however there
remains a dearth of symbolic notation tools to compose
with these new medias while still providing the richness
of symbolic representation designed to be interpreted by a
human intelligence.

The following study looks at what a more open frame-
work for notation might look like for composing and per-
forming scores designed for new and existing types of ren-
dering contexts.

! Including Mozart’s Musikalisches Wiirfelspiel

mailto:rama.gottfried@berkeley.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

_fluoresce_27_n2014 [fluoresce)

Figure 1. Screenshot from Max for Live environment showing breakpoint functions used to control flocking behaviors of virtual sources
in a piece using spatial audio. On the right side of the screen are OpenGL visualization of point locations generated by the many
parameters contained within the algorithm. In a more symbolic notation environment, the parameters of the resulting rendering would

be representational of their function.

2. CONTEXTUAL EXAMPLE:
COMPOSING FOR SPATIAL AUDIO SYSTEMS

Mixed works for live acoustic instruments and real-time
spatial audio rendering systems present significant chal-
lenges for relating the graphic visualizations of spatial pro-
cessing with the traditional musical notations used in a
score.

For example, Ircam’s “Spat” 2> MaxMSP? library for spa-
tial audio processing comes equipped with several useful
forms of representation for visualizing spatial processing.
The simplest visualization tools in Spat display the place-
ment of a point source in two dimensions, viewed from
either “top” (XY) or “front” (XZ) vantage points. The 2D
representation makes the location of points very clear and
minimizes occlusion issues. For 3D visualization Spat’s
viewer may be easily integrated with OpenGL tools in Max’s
Jitter library. These are valuable methods for visualizing
and developing a conceptual basis for spatial design, but
as interactive graphic user interfaces they are time-variant,
and so do not provide a clear mechanism for relating spa-
tial processing with score notated actions to be performed
by the instrumentalist.

Part of this problem is that there is no widely adopted no-
tation system for incorporating spatial movement within a
musical score. Interactive Uls are an intuitive way to ex-
periment and learn the expressive capabilities in new me-
dia contexts, however when seeking to compose temporal
structures, time must be represented as well. Traditional
music notation symbolically represents the articulation of

2http://forumnet.ircam.fr/product/spat/
3https://cycling74.com

sound over metric time, and composers trained in this tradi-
tion learn to silently hear through the spatial organization
of symbols on paper. Similarly, we might develop inner
spatial perception by drawing from a long history of dance
notation to describe spatial movement [4], which could
be used to control a rendering system like Spat. What is
needed is a symbolic graphic environment to explore ways
of composing for these new types of media contexts, we
have many new tools for controlling media, but very few
ways of utilizing symbolic notation practice in these con-
texts.

2.1 Perceptual representations and breakpoint
functions

Composition for spatial processing systems typically oc-
curs in media programming environments or digital audio
workstations, where the compositional approach must be
contextualized within the types of controls provided by the
software tools. As with interactive Uls, real-time process-
ing is time-variant, and so the control parameters of a given
process need to be contextualized in time if a score is de-
sired*. This type of system has a natural affordance to-
wards the triggers and breakpoint functions, which are ex-
tremely useful for fine control over the movement of one
value (Y) over time (X).

This 2D representation, however, requires our spatial per-
ception to be fragmented into three separate parameters
(X-Y-Z or azimuth-elevation-distance). Working in this
perforated situation the user must compose each parame-

4 Keeping in mind that the score does not necessarily need to describe
all events as “fixed” in time.

http://forumnet.ircam.fr/product/spat/
https://cycling74.com

ter individually, so there is a natural tendency to focus on a
smaller number of dimensions (e.g. a tendency to focus on
azimuth over distance). This computationally friendly rep-
resentation comes at the expense of a more intuitive data
manipulation, which is always one step removed in uni-
variate control over multi-dimensional spaces. Figure 1
shows an example of this, where many lines of automation
are composed to describe the spatial behavior of the three
dimensional space shown on the right.

The strength of a well-developed notation system is in the
way layers of contextual meanings are signaled by a com-
bination of symbols. For example, a staccato dot above a
note head is immediately heard and physically felt in the
mind of a musician. There is an interpretive act that ac-
companies a notation symbol that is bound up in a cul-
tural history of practice and experience. This interpretive
act may also be present for electronic musicians who have
worked with breakpoint functions for many years, how-
ever, the breakpoint function is fundamentally a concrete
control over a single parameter as a function of time, where
a symbolic representation is an aggregate of many parame-
ters, functioning through abstract, contextual implications
for how it should be interpreted.

In order to take advantage of the expressivity contained
in symbolic notation into other media contexts, we need
a way to experiment with different notational systems and
strategies outside of music notation.

3. WHY NOT USE MUSIC NOTATION
SOFTWARE?

Software has built-in affordances that simplify certain uses,
while making other approaches more difficult [6]. As mu-
sic notation has become increasingly digitalized over the
last 20 years, software applications designed for music no-
tation have also become increasingly specialized tools fo-
cusing on a specific context at the exclusion of others. Mu-
sic notation software tools expose the author(s)’s idea of
what “music” is, through the types of functions they pro-
vide their users.

The most used music notation programs, Finale> , Lily-
Pond ¢, NoteAbility 7, and Sibelius ®, all target the pro-
duction of traditional music scores, and also provide mech-
anisms for MIDI playback of these scores. Many of these
applications provide APIs for manipulating the musical pa-

Shttp://www.finalemusic.com

°http://www.lilypond.orq

Thttp://debussy.music.ubc.ca/NoteAbility — note
NoteAbility provides some support for communication with MaxMSP
through the use of breakpoint functions and qlist max messages, as well
as an option to export to Antescofo (http://repmus.ircam. fr/
antescofo) score following format. This is useful for traditional mu-
sic, but does not solve the problem of symbolic notation of the processes
occurring in Max.

8http://www.sibelius.com

rameters computationally, in particular LilyPond’s Scheme
based scripting language.

As we have been discussing, traditional notation was not
designed to handle sound’s relationship to advanced instru-
mental techniques, spatial audio, dance, installation art,
and so on. Most traditional notation software has pre-
defined interpretations of the symbolic information con-
tained in the score, a prime example being the ubiquitous
MusicXML® format, which is designed specifically for
“music,” and so does not provide an optimal encoding for
symbolic notation for contexts traditionally thought of as
outside “music.” While most of the above musical notation
programs do allow the user to create custom symbols, the
user is bound to an underlying assumption that the score
is either to be read only by humans or to be performed as
MIDI within a specifically musical context.

Computer aided composition tools such as Abjad ', Bach
INScore 2, MaxScore '*, OpenMusic '*, and PWGL °,
provide environments for algorithmically generating musi-
cal scores, as well as providing connectivity to the types of
new media outputs mentioned above. However, these tools
rely on text input or visual programming, requiring the
artist to formalize their thought process to function within
the confines of a computational structure. In some cases
basic drawing tools are available, however they are limited
in flexibility.

Other experimental notation programs (e.g. GRM’s Acous-
mographe [7], TanniX '® , MaxScore’s Picster ! , Pure Data’s
Data Structures [8], etc.) provide new ways of perform-
ing graphic information, but they also contain symbolic
limitations, which are not found in a graphic design en-
vironment, either through a forced method of playback, or
through a limitation of graphic flexibility. Thus, at the mo-
ment, purely graphic design tools seem to provide a more
flexible option for developing — and composing with — ap-
propriate notation systems. For this reason, many contem-
porary composers use Adobe Illustrator for creating their
scores.

The UPIC (Unit Polyagogique Informatique CEMAMu)
project was one of the first to connect the act of human
drafting with digital sound resources [9]. This integration
of the drawing gesture is related to the working method
in discussion here, the design of the UPIC was however
very much tied to specific rendering contexts (amplitude

nttp://www.musicxml.com
Onttp://abjad.mbrsi.org
Whttp://www.bachproject .net
2http://inscore.sourceforge.net
13http://www.computermusicnotation.com
Ynttp://repmus.ircam. fr/openmusic/home
Shttp://www2.siba.fi/PWGL
®http://www.iannix.org
T http://www.computermusicnotation.com/?page_
id=314

11

>

http://www.finalemusic.com
http://www.lilypond.org
http://debussy.music.ubc.ca/NoteAbility
http://repmus.ircam.fr/antescofo
http://repmus.ircam.fr/antescofo
http://www.sibelius.com
http://www.musicxml.com
http://abjad.mbrsi.org
http://www.bachproject.net
http://inscore.sourceforge.net
http://www.computermusicnotation.com
http://repmus.ircam.fr/openmusic/home
http://www2.siba.fi/PWGL
http://www.iannix.org
http://www.computermusicnotation.com/?page_id=314
http://www.computermusicnotation.com/?page_id=314

W s—

o
o

Figure 2. An example of using Adobe Illustrator’s grouping
mechanism to create a hierarchy of graphic data

envelopes, waveforms, etc.) and so required specific kinds
of symbolic composition, which make it not extendable to
other types of interpretation.

3.1 Sketching and babbling

The recent MusInk [10] and InkSplorer [11] projects have
shown that Livescribe !® pen technology may also be a
way to connect symbolic thinking on paper with digital
rendering capabilities. The MusInk project also provides
the capability to assign a type to an arbitrary symbol, which
is closely related to the present study, however since these
Livescribe projects are designed for paper, they forgo some
of the possibilities offered by graphic design environments.
These studies point to the importance of sketching in de-
veloping new graphic ideas.

Sketches are by definition incomplete, and provide the
mind with an image to reflect on and continually refine
through iteration [12]. David Wessel describes this type
of enactive engagement in his discussion of babbling as a
method for free experimentation in sensory-motor devel-
opment in language and instrument learning, leading to-
wards the development of a “human-instrument symbio-
sis” [13]. Such a symbiosis should also be possible with
symbolic thought and computer controlled rendering sys-
tems.

3.2 Performing digital graphic scores

Graphic design applications like Adobe Illustrator, InkScape,
OmniGraffle are created to have the basic affordances of a
drafting table: a piece of paper, pen, stencils, and ruler —
with the end goal of creating publication ready documents.
There are no built-in musical functions, no button for trans-
position, no MIDI playback, etc. What these applications
provide are the basic tools for visually creating whatever
it is that you want to draw, generally in two dimensions.
The user is left to decide what the meaning of the graphics
might be.

Composers who choose to work in graphic design pro-
grams rather than music notation programs are silently stat-
ing that they do not expect to be able to render their score
with the computer in the way that a typical musical nota-
tion program will have built in MIDI playback. Rather, it

Bhttp://www.livescribe.com

is implied that they accept that due to software constraints
their work is graphic, and either meant to be performed
only by humans who will be able to interpret the score,
or that the score is a descriptive notation of electronic re-
sults rather than proscriptive notation of how to perform
the material. However this does not need to be the case.
As a preliminary study implementation, the SVG output of
[lustrator was used as a container for performable graphic
information, leveraging Illustrator’s layer panel as a con-
trol for hierarchical grouping.

4. IMPLEMENTATION

Scalable Vector Graphic (SVG) ' is an XML-based open
standard developed by the World Wide Web Consortium
(W3C) for two dimensional graphics. In addition to being
widely supported in software applications, the SVG Stan-
dard provides several key features that make it an attractive
solution for digital graphic notation: (1) it is human read-
able which makes it easy to open an SVG file in a text edi-
tor and understand how the data is structured; (2) the SVG
format provides a palette of primitive vector shapes that are
the raw building blocks for most notations (and also pro-
vides tags for adding further types); (3) inheriting XML’s
tree structure model, SVG provides standardized grouping
and layer tags allowing users to create custom hierarchies
of graphic objects; and (4) the header for SVG files in-
cludes the canvas information for contextualizing the con-
tent of the file.

In this paper, we propose replacing the graphics renderer
with a new type of rendering interpretation, be it sonic,
spatial, kinetic, or any other possible output type. Thought
of this way, the SVG file functions as hierarchical input
data, to be rendered, or performed by an electronic instru-
ment. In our implementation, OpenSoundControl (OSC)
[14] serves as a transcoding layer used for processing an
interpretation of the SVG file structure.

4.1 SVG — Odot — Performance

As a first test to interpret and perform the SVG score within
the Max environment, the LibXML2 ?° library was used to
parse the SVG file created in Adobe Illustrator (figure 2),
and convert the SVG tree (figure 3), into an OSC bundle
(figure 4). For convenience, this was implemented in C
and put in a Max object called “o.svg”. The SVG graphic
data was then reformatted, and interpreted for performance
utilizing the “odot” OSC expression language developed at
CNMAT over the last few years [15].

Based on the OSC protocol, CNMAT’s new odot library

provides tools for handing OSC bundles as time-synchronized

19 SVG Standard: http://www.w3.org/TR/SVG
O http://xmlsoft.org

http://www.livescribe.com
http://www.w3.org/TR/SVG
http://xmlsoft.org

svg PUBLI
version="1.1"

-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">
ayer_1" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://ww.w3.0rg/1999/xlink" x="@px" y="0px"

width="792px" height="612px" viewBox="@ @ 792 612" enable-background="new @ @ 792 612" xml:space="preserve">

249.535" fill="

000000"
000000"
000000"
000000"
000000"

stroke-mite
stroke-mite
stroke-miterl
stroke-miterl

fill="none" stroke-miterlimi

X
X
X
X
X

ne" stroke="#000000" stroke-miterlimit="10" width="715.966" height="111.765"/>

Figure 3. The contents of the SVG file, showing the hierarchical graphic information designed in Figure 2.

o
osvg
@separator -
?autswamh 1

‘dev-1ib/Cl /src/o.

: "/Volumes/Macintosh HD/Users/r/
{

/version :

/x 0.,

1y : 0.,

/width : 792.,
/height : 612.,
/viewBox : 0.,
/enable-background :
/space : "preserve",
/page/1 : {

"new 0 0 792 612",

: "none"

"#000000",
/stroke-miterlimit : 10.,
/width : 715.966,
/height : 111.765

/stroke :

b

Jevents 1_ : (

/type : "g",

7id : "events 1,
/circle/1 : {

type @ "circle",
/id : "circle/1",
/i1l FFFF",
/stroke : "#000000",
/stroke-miterlimit : 10.,
/cx i 104.415,

Jey : 462.172,

/r : 2.155

1o

Figure 4. The contents of the SVG file designed in Figure 2,
transcoded to Odot in the MaxMSP programming environment.

hierarchical data structures within data-flow programming
environments like Max, Pure Data (Pd) 2! , and NodeRed ?? .
Through odot’s expression language, the OSC bundle be-
comes a local scope for time-synchronized variables in which
functions may be applied referencing the named contents
of the bundle [16]. Thus, by transcoding the SVG file con-
tents into an OSC bundle, it is possible to process the data
in Max/Pd, interpreting the values intended for graphic
rendering as control parameters for synthesis, spatializa-
tion, and any other parameter controllable with the com-
puter.

The graphic content and grouping relations within an SVG
file are described by the organization of XML elements,
and graphic primitives as specified by the SVG Standard.
For example, a group of SVG elements might look like
this:

<g id="note-duration-event">
<circle id="notehead" cx="100" cy="300" r="3.76"/>
<line id="duration" fill="none" stroke="#000000" stroke-width=
"3" stroke-miterlimit="10" x1="100" yl="300" x2="200"
"300"/>

y2=
</g>

Each SVG element follows a similar structure, the ele-
ment tag name is followed by a list of attributes to the

2lpttp: //puredata.info
2 http://nodered.org

element. The <g> tag indicates a group which is closed
by the </g> tag, and has an id attribute with the value
"note—-duration-event". The o.svg object creates
an OSC bundle, mirroring the structure of the SVG file,
and creating OSC addresses for each attribute name of a
given SVG element, using the id attribute as the element
name for example:

/note_duration_event/notehead/type : "circle",
/note_duration_event/notehead/cx : 100,
/note_duration_event/notehead/cy : 300,
/note_duration_event/notehead/r : 3.76,

After transcoding the SVG file into OSC, the SVG data
may be interpreted, and performed in Max through the odot
library, allowing us to sort and iterate over the items, and
to apply interpretive functions (figure 5).

4.2 Grouping strategies

With the transcoding from SVG to OSC in place it be-
comes possible to begin composing within a graphic de-
sign program in a way that facilitates the interpretation and
performance downstream in OSC. Using the id attribute to
identify groups and graphic objects, it is then possible to
use the SVG tree structure as a framework for developing
grammars which can be used later to interpret the graphic
information for the generation of control parameters.
Taking traditional musical notation as a starting point, a
logical structural design to facilitate rendering might be
something like the one illustrated in figure 6. With the root
<svg> tag understood as the global container for a full
score, the next largest container would be the page, fol-
lowed by a system which might contain many instrument
staves (or other output types), each with their own staff
and clef. Within the individual staff group, there might be
graphic information providing the bounds of the staff (e.g.
lines marking different qualities within the vertical range
of the staff as described by the clef; where the X dimension
usually (but not necessarily) representing time). Within
this grammar structure, the bounds of the staff provide a
context for interpreting event objects contained within the
staff group. Further, each event object grouping may con-
tain any number of graphic objects. For example a note-
duration-event might contain a shape identified as a note-
head, with other graphic objects representing the event’s

http://puredata.info
http://nodered.org

I:adbang
I

/scale/midi : [60, 100],
/fn/start : "lambda(x1l, assign(quote(/grain/start), x1 * /scale/time))",
n /fn/dur : "lambda([x1, x2], assign(quote(/grain/dur), (x2 - x1) * /scale/time))",
/fn/pitchl : "lambda(yl, assign(quote(/grain/pitchl), yl * (/scale/midi[[1]] - /scale/midi[[0]]) + /scale/midi[[0]]))",
"lambda (y2, assign(quote(/grain/pitch2), y2 * (/scale/midi[[1]] - /scale/midi[[0]]) + /scale/midi[[0]]))"

I /fn/pitch2 :

o.union

o.prepend /interpretation

Figure 5. Example of storing interpretations of graphic information contained in the SVG file in Odot lambda functions. Here, the
function describes a process of interpretation where the x1 value indicates the start time, scaled to a given time constant, and the duration

is the horizontal span of the object.

page

system

_— [T

stave

staff

/

clef staff bounds

event objects

note-duration-event

note-head-shape onset marker duration-line other parameters...

Figure 6. Example namespace hierarchy for identifying score
elements. Event object could be any user defined graphic symbol
(e.g. acircle, line, paths, gradients, etc.).

onset, duration, and any other parameters.

Figure 7 shows a potential expansion of the note-duration-
event object to include with a second frame-staff placed
above the pitch-staff used to notate the spatial trajectory of
the sound source in a 2D frame. In this example, a dot-
ted vertical line identified as a stem is used to coordinate
the beginning of the trajectory with the beginning of a col
legno battuto jeté glissando, with a duration indicated by
the length of the beam line identified as duration. This
type of trajectory is the simplest type of spatial processing,
in cases with more complex treatments, such as spherical
harmonic manipulation, other types of notation would be
more appropriate.

5. CRITIQUE AND FUTURE WORK

The initial results of the work are encouraging, however,
there are many areas that could be developed further. The
study shows that it is possible to increase the rendering
context flexibility by separating the score editing environ-
ment from pre-conceived ideas about how the score might
be interpreted or rendered. The flip-side to the current
implementation which uses only the odot/OSC expression
language for parsing the assigned meaning of the notation,

Xy
10x10m

OS
L]
clb :mﬁ-m—m

11é

Figure 7. A more developed example showing a 2D trajectory
in frame notation in Adobe Illustrator. The hierarchy structure is
shown on the right side.

is that while the possibilities of the system are extremely
large, this flexibility comes at the price of the parsing pro-
gramming that must be written to interpret and perform
the score. For example, if a user wants to also use tradi-
tional musical notation formatting rules, the entire mecha-
nism for traditional score interpretation must be built using
the odot expression language. As daunting as this might
sound, the symbolic flexibility of the graphic design envi-
ronment plus the many rendering media accessible through
OSC may make the development of multiple rendering sys-
tems worth the effort.

[lustrator’s editing environment has been very well de-
veloped for many years to become the standard for graphic
design, which in addition to extensive support for print out-
put, provides a large number graphic functions that can
be leveraged for temporal media composition. However,
since Illustrator is designed for graphic art not “renderable
scores,’ there are noticeable limitations on the amount of
data that can be contained in a graphics file before it begins
to effect the application’s responsiveness. This eventually
points to the fact that a specialized tool for notation might

indeed be useful, providing a database and Model View
Controller (MVC) architecture for interacting with score
data.

Adobe’s recently announced support for Node.js >* opens
up several new options for working within the Illustrator
application. For example, with odot’s SWIG ?* based JS
bindings, a Node plug-in could be created to stream OSC
score data directly from Illustrator without the need to save
the file to disk and reload it with the o.svg object. With the
addition of Node as a plug-in backend this means that Pa-
per.js? could be used to create custom interactive GUIs
for handling data. Paper.js is developed by the same team
who wrote Scriptographer 2® which was a powerful JS based
drawing tool building suite for Illustrator, and was one of
the initial tools for an earlier version of our study. Un-
fortunately, Adobe drastically changed their plugin design
in Illustrator CS6, which broke Scriptographer. This is an
important point to be considered for any future work in
the present study, and is one indicator that possibly an in-
dependent design environment might be a more reliable
long-term solution. A future iteration of the study might
be in the form of a Node and Paper.js based editor with a
stripped-down toolkit for symbolic graphic notation. The
Paper.js front-end would allow users to easily create their
own interactive tools, and either export a rendering of the
score to SVG for printing with a program like Illustrator, or
the score could be streamed via odot/SWIG. There is some
possibility that INScore’s V827 integration might provide
a suitable platform for these developments, this would also
allow the editor to take advantage of INScore’s MVC de-
sign, and traditional notation tools.

Other improvements might include a more intuitive sys-
tem for defining meaning for symbols. In the process of
sketching and developing a notation, it was time consum-
ing to constantly keep objects nicely grouped and labeled
using Illustrator’s layer and grouping tools. This issue can
be mitigated thought the use of search algorithms to auto-
detect symbol patterns (i.e. containing similar types of
graphic objects, gestures, etc.) which would allow the artist
to later apply semantic structuring rule to different mem-
bers of these symbolic groupings.

6. CONCLUSION

The authoring of data in computer music systems is pre-
dominately done through graphical representations of uni-
variate functions, whereas symbolic notation systems like

B http://www.adobe.com/devnet /
cs—extension-builder/articles/
extend-adobe-cc-2014-apps.html

X http://www.swig.org

B nttp://paperis.org

% nttp://scriptographer.org

2T https://code.google.com/p/v8

music notation are aggregate and contextual. A symbol in
a notation system is given meaning through the interpre-
tation of a human or computerized intelligence based on
contextual understanding, for example the nature of a stac-
cato string articulation is different for different dynamic
ranges. Complex rendering systems incorporating digital
signal processing and/or other electronic media often have
a large number of parameters that artists wish to control
expressively. Due to the affordances of the programming
environments in which these pieces are created, there is
typically a focus on control of many single parameters.
However, the symbolic representation of information such
as spatial location becomes fragmented in these systems,
forcing a point in space to be represented with three sepa-
rate coordinates, which in many ways obscures its percep-
tual simplicity.

The SVG format provides a useful method for defining
meanings of symbols leveraging Illustrator’s grouping and
layering tools, while the graphic editing environment pro-
vided by graphic design programs like Illustrator provide a
flexible vector graphic drafting environment for symbolic
experimentation. Since Illustrator was designed without
musical applications in mind, there are no pre-conceived
playback limitations based on the application developer’s
idea of what “music” is, or how graphic symbols on a page
should be organized. This lack of meaning leaves room
for the user to sketch and experiment, as well as requiring
extra effort to create meaning through an interpretive al-
gorithm if the score is meant to be performed by the com-
puter. Transcoding SVG format into OSC facilitates the
interpretation of notation through the use of the odot ex-
pression language in the Max media programming envi-
ronment, providing digital artists a mechanism to perform
graphic symbolic notation with any electronic media ac-
cessible with Max, Pd, or any other application that can
interpret OSC.

Preliminary work on developing an interpretation and per-
formance system for notation stored in SVG format has
proven feasible, however there is still significant work needed
to bring the system to a point where it would be compet-
itive with existing rendering systems that are specifically
designed for a given medium. On the other hand the open-
ness of the SVG format, combined with its compatibility
with OSC points towards a myriad of new ways to expres-
sively controlling new media formats with symbolic no-
tation. Looking towards the future, the above plans for a
new symbolic graphic notation editor discussed in section
5 seem to be a promising direction for the creation of no-
tation software that is capable of being used to render new
media forms that have proven difficult to notate (such as
spatial audio), as well as those that have yet to be thought
of.

http://www.adobe.com/devnet/cs-extension-builder/articles/extend-adobe-cc-2014-apps.html
http://www.adobe.com/devnet/cs-extension-builder/articles/extend-adobe-cc-2014-apps.html
http://www.adobe.com/devnet/cs-extension-builder/articles/extend-adobe-cc-2014-apps.html
http://www.swig.org
http://paperjs.org
http://scriptographer.org
https://code.google.com/p/v8

Acknowledgments

I would like to thank John MacCallum and Adrian Freed
for their valuable feedback in developing this study, and
in developing the odot system without which this work
would not exist. I would also like to thank Olivier Warus-
fel, Markus Noisternig, and Thibaut Carpentier for their
mentorship during my spatial composition residency at Ir-
cam where many of these ideas were developed, and to
Jean Bresson for his continued feedback and great work in
the field of musical representation.

7. REFERENCES

[1] K. Stone, “Problems and methods of notation,” Per-
spectives of New Music, vol. 1, no. 2, pp. 9-31, 1963.

[2] P. Manning, “The oramics machine: From vision to re-
ality,” Organised Sound, vol. 17, no. 2, pp. 137-147,
August 2012.

[3] P. L. Smirnov A., “1917-1939. son z / sound in z.”
PALAIS / Palais de Tokyo Magazine, Paris, no. 7, pp.
pp. 6677, 2008.

[4] B. Farnell, “Movement notation systems,” in The
world’s writing systems, O. U. Press, Ed. New York,
NY: Weidenfeld and Nicholson, 1996, pp. 855-879.

[5] M. Battier, “Describe, transcribe, notate: Prospects
and problems facing electroacoustic music,” Organised
Sound, vol. 20, no. Special Issue 01, pp. 60-67, April
2015.

[6] J. Greeno, “Gibon’s affordances,” Psychological Re-
view, vol. 101, no. 2, pp. 336-342, 1994.

[71 Y. Geslin and A. Lefevre, “Sound and musical rep-
resentation: the acousmographe software,” in ICMC.
Miami, USA: International Computer Music Confer-
ence, 2004.

[8] F. Barknecht, “128 is not enough - data structures in
pure data,” in Linux Audio Conference, Karlsruhe, Ger-
many, 2006.

[9] H. Lohner, “The upic system: A user’s report,” Com-
puter Music Journal, vol. 10, no. 4, pp. 42-49, 1986.

[10] T. Tsandilas, C. Letondal, and W. E. Mackay, “Musink:
Composing music through augmented drawing,” in
CHI.
Human Factors in Computing Systems, 2009.

Boston, Massachusetts, USA: Conference on

[11] J. Garcia, T. Tsandilas, C. Agon, and W. Mackay,
“Inksplorer: Exploring musical ideas on paper and
computer,” in NIME. Oslo, Norway: New Interfaces
for Musical Expression, 2011.

[12] M. Tohidi, W. Buxton, R. Baecker, and A. Sellen,
“User sketches:
tive way to elicit more reflective user feedback,” in
NordiCHI.
Human-computer interaction, 2006.

A quick, inexpensive, and effec-

Oslo, Norway: Nordic conference on

[13] D. Wessel, “An enactive approach to computer music
performance,” in Le Feedback dans la Creation Musi-
cal, Y. Orlarey, Ed.
2006, pp. 93-98.

Lyon, France: Studio Gramme,

[14] A. Freed and A. Schmeder, “Features and future of
open sound control version 1.1 for nime,” in NIME.
New Interfaces for Musical Expression, 2009.

[15] A. Freed, J. MacCallum, and A. Schmeder, “Compos-
ability for musical gesture signal processing using new
osc-based object and functional programming exten-
sions to max/msp,” in NIME. Oslo, Norway: New

Interfaces for Musical Expression, 2011.

[16] J. MacCallum, A. Freed, and D. Wessel, “Agile inter-
face development using osc expressions and process
migration,” in NIME, Daejeon Korea, 2013.

	 1. Background
	 2. Contextual Example: Composing for Spatial Audio Systems
	2.1 Perceptual representations and breakpoint functions

	 3. Why not use music notation software?
	3.1 Sketching and babbling
	3.2 Performing digital graphic scores

	 4. Implementation
	4.1 SVG Odot Performance
	4.2 Grouping strategies

	 5. Critique and Future Work
	 6. Conclusion
	 7. References

