
STANDARD MUSIC FONT LAYOUT (SMuFL)

Daniel Spreadbury Robert Piéchaud

Steinberg Media Technologies GmbH

d.spreadbury@steinberg.de

robert.piechaud@gmail.com

ABSTRACT

Digital typefaces containing the symbols used in Western

common music notation have been in use for 30 years,

but the development of the repertoire of symbols that are

included, their assignment to code points, and design

considerations such as glyph metrics and registration,

have been rather ad hoc. The Standard Music Font

Layout (SMuFL) establishes guidelines for all of these

areas, and a reference implementation is available in the

Bravura font family.

Software developers and font designers alike are

beginning to develop implementations of SMuFL in their

products, and benefits including easier data interchange,

interoperability of fonts with a variety of software

packages, are already being felt.

1. A BRIEF HISTORY OF MUSIC FONTS

Computer software has been displaying musical symbols

of various kinds since the 1960s, but the first font for

musical symbols did not arrive until 1985, when Cleo

Huggins designed Sonata for Adobe.
1

Sonata mapped the musical symbols onto keys on the

standard QWERTY keyboard, using some simple

mnemonics (the treble G clef, for example, was mapped

onto the & key, and the sharp sign onto #). Most music

fonts developed since then, including Steve Peha’s

Petrucci (the first music font for the commercial scoring

application Finale, dating from 1988
2
) and Jonathan

Finn’s Opus (the first music font for the commercial

scoring application Sibelius, dating from 1993), have

1
 See http://www.identifont.com/show?12A

2 See

http://blog.finalemusic.com/post/2010/02/18/Meet

-Steve-Peha-creator-of-Petrucci-Finales-first-

music-font.aspx

followed Sonata’s layout.

However, since Sonata includes fewer than 200

characters, and even conventional music notation
3

requires many more symbols than that, individual

vendors have devised their own mappings for characters

beyond Sonata’s initial set.

By 2013, for example, the Opus font family that is still

Sibelius’s default font set contains no fewer than 18 fonts

with more than 600 characters between them.

In 1998, Perry Roland of the University of Virginia

drafted a proposal for a new range of musical symbols to

be incorporated into the Unicode Standard.
4
 This range of

220 characters was duly accepted into the Unicode

Standard, and is found at code points U+1D100–

U+1D1FF.
5
 However, its repertoire of 220 characters

does not extend dramatically beyond the scope of the

original 1985 version of Sonata, though it does add some

characters for mensural and Gregorian notation.

To date the only commercially available music font

that uses the Unicode mapping is Adobe Sonata Std, and

its repertoire is incomplete.

The designers of other music applications have

developed their own approaches to laying out music fonts

that are incompatible with both the Sonata-compatible

approach, and the Unicode Musical Symbols range. In

short, existing standards are either ad hoc or insufficient

for the development of fonts for rich music notation

applications.

2. GOALS FOR A NEW STANDARD

Steinberg began work on a new scoring application at the

start of 2013, and quickly identified both the need for a

new music font, and the lack of an adequate standard for

the layout and design of such a font.

Surveying a range of commercial, open source and

freeware music fonts from a variety of sources, and

3 A term coined by Donald Byrd, Senior Scientist and Adjunct

Associate Professor of Informatics at Indiana University.
4 The original proposal is no longer available, but an archived

version can be found at http://archive.is/PzkaT
5 See http://www.unicode.org/charts/PDF/-

U1D100.pdf

Copyright: © 2015 Daniel Spreadbury et al. This is an open-access

article distributed under the terms of the Creative Commons

Attribution License 3.0 Unported, which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

mailto:d.spreadbury@steinberg.de
mailto:d.spreadbury@steinberg.de
http://www.identifont.com/show?12A
http://blog.finalemusic.com/post/2010/02/18/Meet-Steve-Peha-creator-of-Petrucci-Finales-first-music-font.aspx
http://blog.finalemusic.com/post/2010/02/18/Meet-Steve-Peha-creator-of-Petrucci-Finales-first-music-font.aspx
http://blog.finalemusic.com/post/2010/02/18/Meet-Steve-Peha-creator-of-Petrucci-Finales-first-music-font.aspx
http://www.informatics.indiana.edu/donbyrd/DonBiography.htm
http://archive.is/PzkaT
http://www.unicode.org/charts/PDF/-U1D100.pdf
http://www.unicode.org/charts/PDF/-U1D100.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

considering the needs of the in-development application,

provided the impetus to create a new standard, with the

following goals identified from the outset:

2.1 Extensible by design

The existing Unicode Musical Symbols range is a fixed

set of 220 characters in a fixed range of 256 code points

at U+1D100–U+1D1FF. This range is not easily

extensible, though of course it would be possible for one

or more non-contiguous supplemental ranges to be added

to future versions of Unicode.

Sonata pre-dates the introduction of Unicode: in

common with other PostScript Type 1 fonts of its age, it

uses an 8-bit encoding that limits its repertoire of glyphs

to a maximum of 256 within a single font. Fonts that

broadly follow a Sonata-compatible layout are therefore

likewise limited to a maximum of 256 glyphs, and as

their developers have needed to further expand their

repertoire of characters, they have unilaterally added

separate fonts, with no agreement about which characters

should be included at which code points.

A new standard should be extensible by design, such

that even if the repertoire of characters needs to expand,

there is both a procedure for ratifying the inclusion of

new characters into the standard, and a means for

individual font designers or software developers to add

glyphs for their own private use in a way that does not

break the standard for other users.

2.2 Take advantage of modern font technologies

The development of the Unicode standard and the

OpenType font specification, and their adoption by

operating system, software, and font developers, are both

enormously important: Unicode provides categorization

and structure to the world’s language systems, while

OpenType enables the development of more advanced

fonts with effectively unlimited glyph repertoires and

sophisticated glyph substitution and positioning features.

A new standard should enable software developers and

font designers to build software that takes advantage of

these features, without tying the standard to a specific set

of technologies, so that it is as broadly applicable and

resistant to future obsolescence as is practical to achieve.

2.3 Open license

In order to minimize the number of obstacles for software

developers and font designers to adopt the new standard,

it should be free of onerous software licensing terms.

A new standard should be released under a permissive,

open license that both protects Steinberg’s copyright in

the standard, but makes it free for anybody to use in

whole or in part in any project, whether that project itself

is made available on a commercial basis or under a

permissive or free software license.

Accordingly, Steinberg has released SMuFL under the

MIT License,
6
 which is a permissive free software license

that allows reuse within both proprietary and open source

software.

2.4 Practical and useful

Although it is impossible to say with certainty why the

Unicode Musical Symbols range has failed to gain

support among software developers and font designers, it

is reasonable to assume that the range did not sufficiently

solve the existing problems with the ad hoc Sonata-

compatible approach, perhaps most crucially the lack of

extensibility afforded by the limit of 220 characters,

which represented only a very modest expansion of the

176 characters present in Sonata.

A new standard should not only be extensible, but

should be developed with the practical needs of software

developers and font designers as the top priority,

including providing detailed technical guidelines on how

to solve some of the issues inherent in representing music

notation using a combination of glyphs drawn from music

fonts and drawn primitive shapes (stroked lines, filled

rectangles, curves, etc.).

2.5 Facilitate easier interchange

As existing music fonts have been developed in isolation

by independent software developers and font developers,

despite broad intent to make it possible for end users of

scoring programs to use a variety of fonts, including

those designed for other applications, in practice the level

of compatibility between fonts and scoring programs is

rather low.

A comparison of the repertoire of glyphs in Sonata,

Petrucci, and Opus shows that only 69 of 176 glyphs in

Sonata are also present in both Petrucci and Opus; a

further 38 glyphs are present in Sonata and Petrucci, but

not Opus; and a further 5 glyphs are present in Petrucci

and Opus, but not Sonata; a further 59 glyphs in Sonata

are present in neither Opus nor Petrucci.

Furthermore, there is no practical way for an end user

to know in advance of attempting to use a different font

whether or not a given range of characters is

implemented in that font, and when transferring

documents created in software between systems there is

little guarantee that the software can translate the required

glyph from one font to another.

A new standard should improve the compatibility of

music fonts between different systems by providing not

only an agreed mapping of characters to specific code

6 See http://opensource.org/licenses/MIT

http://opensource.org/licenses/MIT

points, but also a means for font designers to describe

programmatically the repertoire of characters

implemented in a given font.

2.6 Build community support

The range of symbols used in Western music notation is

so deep and broad that it is difficult for any individual

person or small group to have sufficient knowledge to

correctly identify and categorize the characters.

Furthermore, without broad support among software

developers and font designers, any new standard is

destined to languish unused.

A new standard should be developed in the open,

inviting interested parties to contribute ideas and

discussion to the development of the repertoire of

characters, their categorization, and technical

recommendations about font design, glyph metrics, and

glyph registration.

3. NON-GOALS FOR A NEW STANDARD

At the outset of the project, it was determined that, in the

short- to medium-term at least, targeting ratification of

the new standard by the Unicode Consortium in order to

broaden the range of musical symbols encoded by

Unicode was not a goal of the project. Developing the

standard independently, away from the more rigorous

requirements of the proposal and review process, gives

greater agility and faster iteration as new requirements

emerge.

Initially it was also determined that attempting to

develop a set of recommendations for fonts to be used

inline with text fonts in word processing or page layout

software would be too much work to undertake right

away, in addition to the core goal of developing

recommendations for fonts to be used in specialized

music notation software. However, after the launch of the

new standard at the Music Encoding Conference in

Mainz, Germany in May 2013, the members of the

nascent community identified this as a high priority

activity, and the development of guidelines for fonts to be

used in text-based applications was added as a

requirement for the first stable release of the new

standard.

4. WHAT IS SMUFL?

The Standard Music Font Layout, or SMuFL

(pronounced “smoofle”), provides both a standard way of

mapping music symbols to the Private Use Area of

Unicode’s Basic Multilingual Plane, and a detailed set of

guidelines for how music fonts should be built.

As a consequence of the joint effort of the community

that has arisen around the development of the standard, it

also provides a useful categorization of thousands of

symbols used in Western music notation.

4.1 Character repertoire and organization

The initial public release of SMuFL, version 0.4,

included around 800 characters. By the time of the

release of version 1.0, in June 2014, the total number of

characters included had grown to nearly 2400, organized

into 104 groups.

SMuFL makes use of the Private Use Area within

Unicode’s Basic Multilingual Plane (code points from

U+E000–U+F8FF). The Unicode standard includes three

distinct Private Use Areas, which are not assigned

characters by the Unicode Consortium so that they may

be used by third parties to define their own characters

without conflicting with Unicode Consortium

assignments.

SMuFL is a superset of the Unicode Musical Symbols

range, and it is recommended that common characters are

included both at code points in the Private Use Area as

defined in SMuFL and in the Unicode Musical Symbols

range.

The groups of characters within SMuFL are based on

the groupings defined by Perry Roland in the Unicode

Musical Symbols range, but with finer granularity. There

are currently 108 groups, proceeding roughly in order

from least to most idiomatic, i.e. specific to particular

instruments, types of music, or historical periods. The

grouping has no significance other than acting as an

attempt to provide an overview of the included

characters.

Groups are assigned code points in multiples of 16.

Room for future expansion has, where possible, been left

in each group, so code points are not contiguous. The

code point of each character in SMuFL 1.0 is intended to

be immutable, and likewise every character has a

canonical name, also intended to be immutable. Since the

release of SMuFL 1.0, a few additional characters have

already been identified that should be added to groups

that were already fully populated, and, in common with

the approach taken by the Unicode Consortium, new

supplemental groups have been added at the end of the

list of existing groups to accommodate these additions.

4.2 Inclusion criteria

No formal criteria have been developed for whether or

not a given character is suitable for inclusion in SMuFL.

Members of the community make proposals for changes

and additions to the repertoire of characters, giving rise to

public discussion, and once consensus is reached, those

changes are made in the next suitable revision.

In general a character is accepted if it is already in

widespread use: although composers and scholars invent

new symbols all the time, such a symbol can only be

included in SMuFL if there is broad community support.

4.3 Recommended and optional glyphs

One of the aims of SMuFL is to make it as simple as

possible for developers both of fonts and of scoring

software to implement support for a wide range of

musical symbols. Although modern font technologies

such as OpenType enable a great deal of sophistication in

automatic substitution features, applications that wish to

use SMuFL-compliant fonts are not obliged to support

advanced OpenType features.

The basic requirements for the use of SMuFL-

compliant fonts are the ability to access characters by

their Unicode code point, to measure glyphs, and to scale

them (e.g. by drawing the font at different point sizes). If

applications are able to access OpenType features such as

stylistic sets and ligatures, then additional functionality

may be enabled.

However, all glyphs that can be accessed via OpenType

features are also accessible via an explicit code point. For

example, a stylistic alternate for the sharp accidental

designed to have a clearer appearance when reproduced

at a small size can be accessed as a stylistic alternate for

the character accidentalSharp, but also by way of its

explicit code point, which will be in the range U+F400–

U+F8FF.

Because optional glyphs for ligatures, stylistic

alternates, etc. are not required, and different font

developers may choose to provide different sets (e.g.

different sets of glyphs whose designs are optimized for

drawing at different optical sizes), SMuFL does not make

any specific recommendations for how these glyphs

should be assigned explicit code points, except that they

must be within the range U+F400–U+F8FF, which is

reserved for this purpose and for any other private use

required by font or application developers.

In summary, recommended glyphs are encoded from

U+E000, with a nominal upper limit of U+F3FF (a total

of 5120 possible glyphs), while optional glyphs

(ligatures, stylistic alternates, etc.) are encoded from

U+F400, with a nominal upper limit of U+F8FF (a total

of 1280 possible glyphs).

In order for a font to be considered SMuFL-compliant,

it should implement as many of the recommended glyphs

as are appropriate for the intended use of the font, at the

specified code points. Fonts need not implement every

recommended glyph, and need not implement any

optional glyphs, in order to be considered SMuFL-

compliant.

4.4 SMuFL metadata

To aid software developers in implementing SMuFL-

compliant fonts, three support files in JSON format [1]

are available.

glyphnames.json maps code points to canonical glyph

names, which by convention use lower camel case, a

convenient format for most programming languages. The

file is keyed using the glyph names, with the SMuFL

code point provided as the value for the codepoint key,

and the Unicode Musical Symbols range code point (if

applicable) provided as the value for the

alternateCodepoint key. The description key contains

the glyph’s description.

classes.json groups glyphs together into classes, so that

software developers can handle similar glyphs (e.g.

noteheads, clefs, flags, etc.) in a similar fashion. Glyphs

are listed within their classes using the names specified in

glyphnames.json. Not all glyphs are contained within

classes, and the same glyph can appear in multiple

classes.

ranges.json provides information about the way glyphs

are presented in discrete groups in this specification. This

file uses a unique identifier for each group as the primary

key, and within each structure the description specifies

the human-readable range name, glyphs is an array

listing the canonical names of the glyphs contained

within the group, and the range_start and range_end

key/value pairs specify the first and last code point

allocated to this range respectively.

4.5 Font-specific metadata

It is further recommended that SMuFL-compliant fonts

also contain font-specific metadata JSON files. The

metadata file allows the designer to provide information

that cannot easily (or in some cases at all) be encoded

within or retrieved from the font software itself, including

recommendations for how to draw the elements of music

notation not provided directly by the font itself (such as

staff lines, barlines, hairpins, etc.) in a manner

complementary to the design of the font, and important

glyph-specific metrics, such as the precise coordinates at

which a stem should connect to a notehead.

Glyph names may be supplied either using their

Unicode code point or their canonical glyph name (as

defined in the glyphnames.json file). Measurements are

specified in staff spaces, using floating point numbers to

any desired level of precision.

The only mandatory values are the font’s name and

version number. All other key/value pairs are optional.

The engravingDefaults structure contains key/value

pairs defining recommended defaults for line widths etc.

The glyphsWithAnchors structure contains a structure

for each glyph for which metadata is supplied, with the

canonical glyph name or its Unicode code point as the

key, and is discussed in more detail below.

The glyphsWithAlternates structure contains a list of

the glyphs in the font for which stylistic alternates are

provided, together with their name and code point.

Applications that cannot access advanced font features

like OpenType stylistic alternates can instead determine

the presence of an alternate for a given glyph, and its

code point, using this data.

The glyphBBoxes structure contains information about

the actual bounding box for each glyph. The glyph

bounding box is defined as the smallest rectangle that

encloses every part of the glyph’s path, and is described

as a pair of coordinates for the bottom-left (or southwest)

and top-right (or northeast) corners of the rectangle,

expressed staff spaces to any required degree of

precision, relative to the glyph origin.

The ligatures structure contains a list of ligatures

defined in the font. Applications that cannot access

advanced font features like OpenType ligatures can

instead determine the presence of a ligature that joins

together a number of recommended glyphs, and its code

point, using this data.

The sets structure contains a list of stylistic sets defined

in the font. Applications that cannot access advanced font

features like OpenType stylistic sets can instead

determine the presence of sets in a font, the purpose of

each set, and the name and code point of each glyph in

each set, using this data.

4.5.1 Example of how font-specific metadata is used

Figure 1 shows how font-specific metadata may be used

in conjunction with the conventions of glyph registration

to construct two notes: an up-stem 16
th

 note

(semiquaver), and a down-stem 32
nd

 (demisemiquaver).

• The horizontal grey lines denote staff lines, for scale.

• The dashed boxes show glyph bounding boxes, with

the left-hand side of the box corresponding to x=0, while

the horizontal lines bisecting the blue boxes show the

origin for each glyph, i.e. y=0.

• The shaded red boxes show the locations of the glyph

attachment points, as specified in the font metadata JSON

file.

• The shaded area on the down-stem note shows the

amount by which a stem of standard length (i.e. the

unfilled portion of the stem) should be extended in order

to ensure good on-screen appearance at all zoom levels.

Note that the stemUpSE attachment point corresponds

to the bottom right-hand (or south-east) corner of the

stem, while stemDownNW corresponds to the top left-

hand (or north-west) corner of the stem. Likewise, for

correct alignment, the flag glyphs must always be aligned

precisely to the left-hand side of the stem, with the glyph

origin positioned vertically at the end of the normal stem

length.

4.6 Glyph registration and metrics recommendations

In addition to providing a standard approach to how

musical symbols should be assigned to Unicode code

points, SMuFL also aims to provide two sets of

guidelines for the metrics and glyph registration,

addressing the two most common use cases for fonts that

contain musical symbols, i.e. use within dedicated

scoring applications, and use within text-based

applications (such as a word processors, desktop

publishers, web pages, etc.).

Since it is helpful for scoring applications that all

symbols in a font be scaled relative to each other as if

drawn on a staff of a particular size, and conversely it is

helpful for musical symbols to be drawn in-line with text

to be scaled relative to the letterforms with which the

musical symbols are paired, in general a single font

cannot address these two use cases: the required metrics

and relative scaling of glyphs are incompatible.

Therefore, it is recommended that font developers make

clear whether a given font is intended for use by scoring

applications or by text-based applications by appending

“Text” to the name of the font intended for text-based

applications; for example, “Bravura” is intended for use

by scoring applications, and “Bravura Text” is intended

for use by text-based applications (or indeed for mixing

musical symbols with free text within a scoring

application).

The complete guidelines for key font metrics and glyph

registration are too detailed to reproduce here, so they can

be read in full in the SMuFL specification.
7
 Those

guidelines that apply to the font as a whole, rather than

specific groups of glyphs, are reproduced below.

7 See http://www.smufl.org/download

Figure 1 : Diagram illustrating how points defined in font-specific

metadata can be used by scoring software.

http://www.smufl.org/download

4.6.1 Guidelines for fonts for scoring applications

Dividing the em in four provides an analogue for a five-

line staff: if a font uses 1000 upm (design units per em),

as is conventional for a PostScript font, one staff space is

equal to 250 design units; if a font uses 2048 upm, as is

conventional for a TrueType font, one staff space is equal

to 512 design units.

The origin (bottom left corner of the em square, i.e.

x = 0 and y = 0 in font design space) therefore represents

the middle of the bottom staff line of a nominal five-line

staff, and y = 1 em represents the middle of the top staff

line of that same five-line staff.

All glyphs should be drawn at a scale consistent with

the key measurement that one staff space = 0.25 em.

Unless otherwise stated, all glyphs shall be horizontally

registered so that their leftmost point coincides with

x = 0.

Unless otherwise stated, all glyphs shall have zero-

width side bearings, i.e. no blank space to the left or right

of the glyph.

4.6.2 Guidelines for fonts for text-based applications

Upper case letters in a text font do not typically occupy

the whole height of the em square: instead, they typically

occupy around 75–80% of the height of the em square,

with the key metrics for ascender and caps height both

falling within this range. In order for the line spacing of a

font containing music characters to be equivalent to that

of a text font, its key metrics must match, i.e. the

ascender, caps height and descender must be very similar.

Glyphs with unusually large ascenders and descenders

(such as notes of short duration with multiple flags)

should not be scaled individually in order to fit within the

ascender height, as they will not then fit with the other

glyphs at the same point size; however, the behavior of

glyphs that extend beyond the font’s ascender and

descender metrics is highly variable between different

applications.

Leading on from the premise that a SMuFL-compliant

font for text-based applications should use metrics

compatible with regular text fonts, specific guidelines are

as follows:

Dividing 80% of the height of the em in four provides

an analogue for a five-line staff. If a font uses 1000 upm

(design units per em), as is conventional for a PostScript

font, the height of a five-line staff is 800 design units, or

0.8em; therefore, one staff space height is 200 design

units, or 0.2 em. If a font uses 2048 upm, as is

conventional for a TrueType font, the height of a five-line

staff is 1640 design units, and one staff space is 410

design units.

The origin (bottom left corner of the em square, i.e.

x = 0 and y = 0 in font design space) therefore represents

the middle of the bottom staff line of a nominal five-line

staff, and y = 0.8 em represents the middle of the top staff

line of that same five-line staff.

Unless otherwise stated, all glyphs should be drawn at a

scale consistent with the key measurement that one staff

space = 0.2 em.

Unless otherwise stated, all glyphs shall be horizontally

registered so that their leftmost point coincides with x =

0.

Unless otherwise stated, all glyphs shall have zero-

width side bearings, i.e. no blank space to the left or right

of the glyph.

Staff line and leger line glyphs should have an advance

width of zero, so that other glyphs can be drawn on top of

them easily.

5. REFERENCE FONT

To demonstrate all of the key concepts of SMuFL, a

reference font has been developed. The font family is

called Bravura, and consists of two fonts: Bravura, which

is intended for use in scoring applications; and Bravura

Text, which is intended for use in text-based applications.

The word Bravura comes from the Italian word for

“cleverness”, and also, of course, has a meaning in music,

referring to a virtuosic passage or performance; both of

these associations are quite apt for the font. From an

aesthetic perspective, Bravura is somewhat bolder than

most other music fonts, with few sharp corners on any of

the glyphs, mimicking the appearance of traditionally-

printed music, where ink fills in slightly around the edges

of symbols, and the metal punches used in plate

engraving lose their sharp edges after many uses. A short

musical example set in Bravura is shown below (Figure

2).

Steinberg has released the Bravura fonts under the SIL

Open Font License [2]. Bravura is free to download, and

can be used for any purpose, including bundling it with

other software, embedding it in documents, or even using

it as the basis for a new font. The only limitations placed

on its use are that: it cannot be sold on its own; any

derivative font cannot be called “Bravura” or contain

“Bravura” in its name; and any derivative font must be

released under the same permissive license as Bravura

itself.

Figure 2. Example of the Bravura font.

6. IMPLEMENTATION CASE STUDY: THE

NOVEMBER FONT

Unlike designers of text fonts, music font designers have

historically had great freedom, which has been both a

blessing and a curse. Before SMuFL, while there was

some common sense about what the kernel of music

symbols should be (clefs, noteheads, accidentals, etc.),

the actual position of characters in the font, their naming

(though there was generally none provided), and the

addition of rarer symbols beyond the basic set was left up

to the designer’s imagination and to some specific

requirements of the target music notation software.

Things are changing for the font designer with SMuFL

as its main goal is to address the issues of symbol

position, naming and repertoire in a universal way.

SMuFL is a great source of inspiration for the designer –

surely one of its benefits – but it also imposes new

constraints and requirements, and leads to a more

demanding design workflow.

6.1 The November Font – Summary

The November music font was designed in 1999

specifically for the software Finale, and its repertoire of

330 characters, spread over two font files, ranging

through historical periods spanning the Renaissance to

the 20th century avant garde, was considered large at that

time. Before SMuFL, the extension of November’s

repertoire had often been considered, but it would have

most likely led to the multiplication of font files, as had

occurred with, for example, Opus or Maestro, which the

designer was reluctant to do, and consequently only small

updates had been made over the years.

6.2 Moving to SMuFL

The emergence of SMuFL back in 2013 was a great

opportunity for November to make a bigger jump: one

single font file with a greatly extended range of

characters, wrapped in OpenType, and complying with a

new standard.

By switching to SMuFL, the font designer, who

generally is a single individual, must be ready to face the

temptation of adding more and more symbols, making the

development process potentially much longer.
8
 And not

only must the designer deal with thousands of vectors and

points, but also to some extent he or she must turn into a

programmer. Python scripting, for instance, can be a

great ally for generating the required metadata

automatically; this was used extensively for the

8 Somehow the designer could not resist this temptation with

November 2.0 in any case!

November 2.0 project.
9
 For SMuFL-scaled font projects,

it is impractical to create those metadata manually, and,

to make the design workflow even better, one can invent

sophisticated tools, for instance to compare the font being

crafted with the reference font, Bravura. All of these

considerations change the font development workflow

deeply.

November 2.0, released in February 2015, now has over

1100 characters, with about 80% of them coming from

the SMuFL specifications, and is the first commercially-

released font to comply with SMuFL. A short musical

example set in November 2.0 is shown below (Figure 3).

6.3 Compatibility with existing scoring software

Unlike the font Bravura, which for now has largely

served as a reference font for SMuFL, commercial

SMuFL-compliant music fonts are intended to be used in

existing music notation programs.

At the present time, no currently available notation

software officially directly supports SMuFL, though such

support is likely forthcoming in the future. In the short- to

medium-term, therefore, a SMuFL-compliant font like

November 2.0 must still be packaged specifically for

each notation program. The SMuFL metadata, for

instance, is currently not consumed at all by any of the

major existing applications (including Finale, Sibelius,

and LilyPond), and idiosyncratic component files
10

 must

be supplied along with the font in order to ensure a

smooth user experience.

But in a positive way, the claim of SMuFL-compliance

for a popular music font like November can potentially

help serve as an impetus for the developers of music

notation software to support SMuFL more quickly.

7. SUPPORT FOR SMUFL

SMuFL 1.0 was released in June 2014. The standard

remains under active development, and it is hoped that an

increasing number of software developers and font

designers will adopt it for their products. Below is a

9 November 2.0 was made with the open source program FontForge

(http://fontforge.github.io/), which has a powerful Python

interface.
10 Finale’s Font Annotations and Libraries, Sibelius’s House Styles,

LilyPond’s snippets…

Figure 3. Example of the November 2.0 font.

http://fontforge.github.io/

summary of the projects that have been publicly

announced that are making use of SMuFL.

7.1 Software with SMuFL support

Steinberg’s forthcoming scoring application will support

SMuFL-compliant fonts.

The open source scoring application MuseScore

supports SMuFL-compliant fonts in version 2.0, which is

currently in beta testing.
11

The web browser-based interactive sheet music and

guitar tablature software Soundslice uses SMuFL and

Bravura for its music notation display.
12

The open source Music Encoding Initiative (MEI)

rendering software, Verovio, also uses SMuFL for its

music notation display.
13

The commercial scoring application Finale, from

MakeMusic Inc., will support SMuFL in a future

version
14

. MakeMusic’s MusicXML import/export plug-

in for Finale, Dolet, supports SMuFL as of version 6.5.
15

The commercial digital audio workstation application

Logic Pro X, from Apple Inc., supports SMuFL and is

compatible with Bravura from version 10.1.
16

7.2 Fonts with SMuFL support

In addition to the reference font Bravura, other SMuFL-

compliant music fonts are beginning to be available.

MuseScore 2.0 includes SMuFL-compliant versions of

Emmentaler and Gootville, based respectively on the

Emmentaler and Gonville fonts designed for use with

LilyPond.

Verovio includes a SMuFL-compliant font called

Leipzig.

Robert Piéchaud has designed an updated version of his

November font family that is SMuFL-compliant
17

.

8. FUTURE DIRECTIONS

Although SMuFL has reached version 1.0 and contains

an enormous range of characters, it remains under active

development, and further minor revisions are expected

for the indefinite future as new characters are identified,

proposed, and accepted for inclusion, and as the need for

new or improved metadata is identified.

11 See http://musescore.org/en/node/30866
12 See http://www.soundslice.com
13 See https://rism-

ch.github.io/verovio/smufl.xhtml?font=Leipzig
14 See http://www.sibeliusblog.com/news/finale-

2014d-and-beyond-a-discussion-with-makemusic/
15 See http://www.musicxml.com/dolet-6-5-finale-

plugin-now-available/
16 See http://support.apple.com/en-us/HT203718
17 See http://www.klemm-

music.de/notation/november/index.php

It is also expected that MusicXML, a widely-used

format for the interchange of music notation data between

software of various kinds, will develop closer ties to

SMuFL in its next major revision, version 4.0, which may

necessitate some changes to SMuFL.

9. CONCLUSIONS

In this paper, a new standard for the layout of musical

symbols into digital fonts has been outlined. The new

standard, called the Standard Music Font Layout

(SMuFL) is appropriate for modern technologies such as

Unicode and OpenType. Through community-driven

development, the standard has reached version 1.0 and

includes nearly 2400 characters, categorized into 104

groups, and is poised for future expansion as necessary.

A reference font family, Bravura, has been developed to

promote the adoption of the new standard. Both SMuFL

and Bravura are available under permissive free software

licenses, and are already being adopted by software

developers and font designers.

Acknowledgements

SMuFL is developed in the open by a community of

music software developers, academics, font designers,

and other interested parties. Too many people to list here

have contributed to the development of the standard to

date, and their contributions have been of great value to

the project.
18

10. REFERENCES

[1] ECMA-404, The JSON Data Interchange Format,

1st edition, 2013.

[2] N. Spalinger and V. Gaultney, SIL Open Font

License (OFL), 2007.

18

 A full list of contributors is printed in the SMuFL specification,

which can be found at http://www.smufl.org/download

http://musescore.org/en/node/30866
http://www.soundslice.com/
https://rism-ch.github.io/verovio/smufl.xhtml?font=Leipzig
https://rism-ch.github.io/verovio/smufl.xhtml?font=Leipzig
http://www.sibeliusblog.com/news/finale-2014d-and-beyond-a-discussion-with-makemusic/
http://www.sibeliusblog.com/news/finale-2014d-and-beyond-a-discussion-with-makemusic/
http://www.musicxml.com/dolet-6-5-finale-plugin-now-available/
http://www.musicxml.com/dolet-6-5-finale-plugin-now-available/
http://support.apple.com/en-us/HT203718
http://www.klemm-music.de/notation/november/index.php
http://www.klemm-music.de/notation/november/index.php
http://www.smufl.org/download

