
GRAPHIC TO SYMBOLIC REPRESENTATIONS OF

MUSICAL NOTATION

 Craig Stuart Sapp

CCARH/Stanford University
craig@ccrma.stanford.edu

ABSTRACT

This paper discusses the SCORE data format, a graph-

ically oriented music representation developed in the

early 1970’s, and how such a representation can be con-

verted into sequential descriptions of music notation. The

graphical representation system for the SCORE editor is

presented along with case studies for parsing and convert-

ing the data into other symbolic music formats such as

Dox, Humdrum, MusicXML, MuseData, MEI, and MIDI

using scorelib, an open-source code library for parsing

SCORE data. Knowledge and understanding of the

SCORE format is also useful for OMR (Optical Music

Recognition) projects, as it can be used as an intermediate

layer between raw image scans and higher-level digital

music representation systems.

1. INTRODUCTION

The SCORE notation editor is the oldest music-

typesetting program in continual use. It was created at

Stanford University in the early 1970’s by Leland Smith

and initially was developed on mainframe computers

with output to pen plotters that was then photo-reduced

for publication. In the 1980’s SCORE was ported to IBM

PCs running MS-DOS with output to Adobe PostScript,

and later ported to Microsoft Windows. Due to the pro-

gram’s long-term stability and excellent graphical output,

many critical editions have been created over the years

using SCORE, such as the complete works of Boulez,

Verdi, Wagner, C.P.E. Bach, Josquin and Dufay.

 Throughout its history the SCORE editor has used a

simple and compact data format that allows forwards and

backwards compatibility between different versions of

the SCORE editor. The music representation system is

symbolic, but highly graphical in nature. Each notational

element is represented by a list of numbers that derive

their meanings based on their positions in the list. This

format was adapted from the one used in Music V soft-

ware for computer-generated sound developed by Max

Mathews in the late 1950’s at Bell Labs. In both cases,

the list of numbers serves as a set of parameters describ-

ing an object—either to generate a sound in Music V or

to place a graphical element on the page in SCORE. This

organization of the data is also parsimonious, due largely

to memory limitations of computers on which these sys-

tems were developed.

Figure 1. SCORE data for bar 3 of Beethoven Op. 81a.

Figure 1 illustrates music typeset in the SCORE editor

along with data describing the third measure. Each line of

numbers represents a particular graphical element, such

as the circled first note of the third measure measure that

is represented on the second line in the data excerpt.

The first four numbers on each line have a consistent

meaning across all notational items:

P1: Item type (note, rest, clef, barline, etc.).

P2: Item staff number on the page.

P3: Item horizontal position on the page.

P4: Item vertical position on the staff.

Copyright: © 2015 Craig Stuart Sapp. This is an open-access article

distributed under the terms of the Creative Commons Attribu-

tion License 3.0 Unported, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original

author and source are credited.

mailto:craig@ccrma.stanford.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Parameter one (P1) indicates the element type—in this

example 1=note, 5=slur, 6=beam, and 14=barline. The

second number is the staff onto which the element is

placed, with P2=1 for the bottom staff and P2=2 for the

next higher staff on the page. The third parameter is the

horizontal position of the item on the page, typically a

number from 0.0 representing the page’s left margin, to

200.0 for the right margin. In Figure 1, items are sorted

by horizontal position (P3) from left to right on the page;

however, SCORE items may occur with any ordering,

which typically indicates drawing sequence (z-order)

when printing the items. P4 indicates the diatonic verti-

cal position on a staff, with positions 3, 5, 7, 9, and 11

being the lines of a five-lined staff from bottom to top.

 These first four numbers on a line give each item an

explicit location on the page. The horizontal position is

an absolute value dependent on the printing area, while

the vertical axis is a hierarchical system based on the staff

to which an item belongs: an item’s vertical position is an

offset from the staff’s position on the page, and the staff

may have an additional offset from its default position on

the page.
1

Figure 2. Parameter values and meanings for a note.

The meaning of parameters greater than P4 depends on

the type of graphical element being described. Objects

with left and right endpoints (beams, slurs, lines) will use

P5 as the right vertical position and P6 as the right hori-

zontal position. Figure 2 illustrates some of the higher

parameter positions for a note. In this example, P5 de-

scribes the stem and accidental display type for the note,

with “10” in this case meaning the note has a stem point-

ing upwards and that there are no accidentals displayed in

front of the note. P6 describes the notehead shape, with 0

meaning the default shape of a solid black notehead. P7

indicates the musical duration of the note in terms of

quarter notes, such as 0.5 representing an eighth-note. P8

1
 For a detailed description of the layout axes, see pp. 7–10 of

http://scorelib.sapp.org/doc/coordinates/StaffPo

sitions.pdf

indicates the length of the stem with respect to the default

height of an octave. All other unspecified parameters

after the last number in the list are implied to be zero.

This means either a literal 0, or it may mean to use the

default value for that parameter. For this example the

implied 0 of P9 indicates that the note has no flags on the

stem, nor are there any augmentation dots following the

notehead.

Multiple attributes may be packed into a single param-

eter value, such as P5 and P9 in the above example. This

parameter compression was due to memory limitations in

computers during the 1970’s and 1980’s. All values in

SCORE data files use 4-byte floating-point numbers.

When a parameter can be represented by ten or fewer

states, they are typically stored as a decimal digit within

these numbers. For example stem directions of notes are

given in the 10’s digit of P5, while the accidental type is

given in the 1’s digit. In addition, the 100’s digit of P5

indicates whether parentheses are to be placed around the

accidental, and the fractional portion of P5 indicates a

horizontal offset for the accidental in front of the note.

The Windows version of the SCORE editor retains this

attribute packing system, primarily for backwards com-

patibility with the MS-DOS version of the program, since

many professional users of SCORE still use the MS-DOS

version of the program. This minimal data footprint

could also be taken advantage of in low memory situa-

tions such as mobile devices or over slow network con-

nections.

 SCORE parameters have an interpreted meaning

based on the item type and parameter number. With the

advent of greater and cheaper memory in computers, the

general trend as seen in XML data formats is to provide a

key description along with the parameter data. Note that

this is a trivial difference between data formats in terms

of functionality, but is more convenient for readability

and error checking. Below is a hypothetical translation of

the SCORE note element discussed in Figure 2 that has

been converted into an XML-style element, providing

explicit key/value pairs for parameters rather than the

fixed-position compressed parameter sequence :

<note>

 <staff>2</staff>

 <hpos>80.335</hpos>

 <vpos>5</vpos>

 <stem>up</stem>

 <accidental>none</accidental>

 <shape>solid </shape>

 <duration>0.5</duration>

 <stem-length>2.5</stem-length>

 <flags>0</flags>

 <aug-dots>0</aug-dots>

</note>

http://scorelib.sapp.org/doc/coordinates/StaffPositions.pdf
http://scorelib.sapp.org/doc/coordinates/StaffPositions.pdf

A translation of these note parameters into MusicXML

syntax might look like this:

 <note default-x="13">

 <pitch>

 <step>G</step>

 <octave>4</octave>

 </pitch>

 <duration>4</duration>

 <voice>1</voice>

 <type>eighth</type>

 <stem default-y="25">up</stem>

 <beam number="1">begin</beam>

 </note>

The primary difference is that SCORE data does not

encode explicit pitch information. The pitch “G4” can be

inferred from the context of the current clef and key sig-

nature as well as any preceding accidentals on G4’s in the

measure. Extracting pitch information from SCORE data

requires non-trivial but straightforward parsing of the

data (excluding slur/tie analysis). A second important

structural difference is encoding of beams. In SCORE

beams are independent notational items, and linking of

notes to beams is inferred within the editor by their spa-

tial proximity and orientation.

MusicXML 3.0 includes a relatively complete layout

description, which is more hierarchical than SCORE’s

layout description. For example the attribute default-

x=“13” of the <note> element describes the distance from

the left barline of the measure to the notehead, while in

SCORE the P3=80.335 describes the distance from the

left margin to the notehead. The stem length is indicated

in SCORE and MusicXML in an equivalent fashion, with

SCORE setting P8=2.5, which means that the stems

should be 2.5 diatonic steps longer than an octave, while

MusicXML indicates the same information with the de-

fault-y attribute on the <stem> element. Staff assignment

in MusicXML is inferred from the part to which the note

belongs, while SCORE encodes an explicit staff assign-

ment.

 SCORE data is not purely a graphical description of

music notation as demonstrated in the above conversion

example into MusicXML. It also contains some symbol-

ic information necessary for manipulating graphical items

in musically intelligent ways. Within the SCORE editor

the musical data can be played, transposed, moved be-

tween systems, reformatted, and processed in other musi-

cally intelligent ways.

For notes and rests, P7 indicates the duration of the

item. This means that there are two horizontal axes pre-

sent in the data: a spatial axis quantified in P3, and a

temporal axis in P7 that describes time in quarter-note

units. Figure 3 illustrates these two spatial/time axes

present in SCORE data. The SCORE editor can manipu-

late the data based on either of these descriptions of the

music. For example, data entry on each staff can be done

independently, in which case the notes on each staff are

not aligned vertically. The SCORE program’s LJ com-

mand aligns the notes across system staves based on the

P7 durations, and this will cause the P3 values of notes to

match their rhythmic partners on other staves.

Figure 3. Duration and horizontal position information.

In Figure 3, the vertical lines (in red) are located at the

P3 positions of notes in both both staves. In the cases of

chords containing intervals of a second, the notes offset

to the opposite side of the stem have the same P3 hori-

zontal position of the other notes in the chord, but have a

non-zero horizontal offset value (P10). Thus all notes

sounding at the same time on a staff must all have the

same P3 horizontal position; otherwise, the SCORE edi-

tor will misinterpret the notes in a chord as a melodic

sequence. Notes on the offbeat of the first beat in meas-

ure three have been given an intentional P10 offset from

the default spacing, so they do not visually align with the

red guide line although their P3 values match the position

of the line.

The P7 duration values of notes and rests can be used

to calculate the composite rhythm of polyphonic music as

illustrated by the rhythm on the single-lined staff below

the main musical excerpt in Figure 3. Calculating this

rhythmic pattern is necessary for horizontal spatial layout

in music notation. In SCORE, horizontal music spacing

is calculated on a logarithmic scale, using a spacing fac-

tor of approximately the Golden ratio for every power-of-

two rhythmic level.

2. SIMILARITY TO OMR PROCESSING

Extracting symbolic musical data in optical music recog-

nition (OMR) can be divided into two basic steps: (1)

recognizing graphical elements in a scan, and (2) inter-

preting their functions and interrelations. In practice

there is feedback between these two steps for interpreting

the meanings of the elements: if a graphical symbol is

ambiguous or incorrect, the context of other symbols

around it may clarify the meaning of that item. For musi-

cians this interaction mostly occurs at a subconscious

level that can often be difficult to describe within a com-

puter program in order to generate a correct interpretation

of the notation. As an example of the inter-dependency

of these two steps, the OMR program SharpEye
2
 is quite

sensitive to visual breaks in note stems. Finding stemless

noteheads often leads it to identifying the noteheads as

double whole rests which roughly have the same shape as

a stemless black notehead. This is clearly a nonsensical

interpretation when occurring in meters such as 4/4 or

against notes on other staves that do not have the same

duration as a double whole note. In such cases where

interpretation stage yields such strange results, the identi-

fication stage of a graphical element should be reconsi-

dered.

 SCORE’s data format can be considered a perfect

representation of the first stage in OMR processing where

all graphical elements have been correctly identified.

Converting between a basic OMR representation of

graphical elements and SCORE data is relatively easy.

For example Christian Fremerey of the University of

Bonn/ViFaMusik was able to write a Java program,

called mro2score, within a few days that converts the

SharpEye’s graphical representation format into SCORE

data.
3

 The mro2score program essentially transcodes the

identification-stage of musical data from OMR identifica-

tion and adds minimal markup to convert into SCORE

data. In order to convert such symbols into musically

meaning syntaxes, more work is necessary. Most OMR

programs have built-in editors used to assist the correc-

tion of graphic symbol identification as well as their final

interpretation. Such editors function in a manner similar

to the SCORE editor, which can display graphical ele-

ments containing syntactic errors such as missing notes,

or incorrect rhythms. Most graphical notation editors

such as MuseScore, Sibelius or Finale require syntactical-

ly correct data, so they are not as well suited to interac-

tive correction of OMR data.

 In order to convert from SCORE data into more

symbolic music formats, an open-source parsing library

and related programs called scorelib has been developed

by the author.
4
 This library provides automatic analysis

of the relations between notational elements in the data,

linking music across pages, grouping music into systems

and parts, linking notes to slurs and beams, as well as

interpreting the pitches of notes. This library is designed

to handle the second stage in OMR conversions of

scanned music into symbolically manipulable musical

data. Conversion from SCORE, and by extension low-

level OMR recognition data, into other more symbolic

data formats becomes much simpler once these relation-

2
 http://www.visiv.co.uk

3
 http://www.ccarh.org/courses/253/lab/mro2score

4
 http://scorelib.sapp.org

ships between graphical items have been analyzed using

scorelib. Currently the scorelib codebase can convert

SCORE data into MIDI, Humdrum, Dox, MuseData,

MusicXML and MEI data formats.
5

 The following sub-sections describe the basic order

of analyzing SCORE data in order to extract higher-level

musical information needed for conversion into other

musical data formats.

2.1 Staves to Systems

SCORE data does not include any explicit grouping of

staves into musical systems (a set of staves representing

different parts playing simultaneously). So when extract-

ing symbolic information from SCORE data, the first step

is to group staves on a page into systems. Errors are

unlikely to occur in this grouping process, since staves

linked together by barlines are the standard graphical

representation for systems. In orchestral scores, parts

may temporarily drop out on systems where they do not

have notes. In SCORE data, staves are give a part num-

ber so that printed parts can be generated from such

scores by inserting additional rests for systems on which

the part is not present.

2.2 Systems to Movement

Once musical systems have been identified on a page in

SCORE (or with any raw OMR graphical elements), the

identification of the sequence of systems across multiple

pages forming a full movement is necessary in order to

interpret items such as slurs and ties. These may be bro-

ken graphically by system line breaks. If a set of pages

describes a single work, this process is generally as trivial

as the staves to systems identification; however, automat-

ic identification of new movements/works will be de-

pendent on the graphical style of the music layout. Typi-

cally indenting the first system indicates a new move-

ment/work, but this assumption is not always true. When

interpreting SCORE or OMR data, manual intervention

may sometimes be needed to handle non-standard or

unanticipated cases in movement segmentation.

2.3 Pitch Identification

Pitch identification takes extensive processing of the data.

The previous two steps linking staves into systems and

systems across pages into movements must first be done

before identifying pitch. The data must then be read

temporally system by system throughout the movement,

keeping track of the current key and resetting the spelling

of pitches at each barline for each part/staff. Figure 4

illustrates the result of automatic identification of the

5
 See http://scorelib.sapp.org/program for a list of

available conversion and processing programs.

http://www.visiv.co.uk/
http://www.ccarh.org/courses/253/lab/mro2score
http://scorelib.sapp.org/
http://scorelib.sapp.org/program

pitch sequence (g, g, d-flat, c, c, d-natural) for the top

staff of music in measure three of Figure 1.

Figure 4 : Automatic pitch labeling of SCORE data.

 The scorelib library extends the basic SCORE data

format to include a list of key/value pairs following the

initial line of parameters for a graphical item. In Figure

3, the lines starting “@auto@base40Pitch” are examples

of this additional key/value parameter system. In this

case the namespace “auto” indicates automatic identifica-

tion for the pitch of the note. This can be overridden by a

manual setting for the pitch with the “@base40Pitch”

key.

2.4 Beam grouping

Grouping notes connected to a common beam is a step

that can be done either before or after pitch identification,

since these two components of notation are independent.

In SCORE data this can be done deterministically with

little error. Since SCORE data is not organized into

measures like many symbolic music data formats, beams

crossing barlines are not a difficulty in SCORE, although

expressing such barline-crossing beams in translated

formats can be difficult.

2.5 Layer Identification

After beaming identification, the most appropriate analy-

sis is to interpret the number of independent monophonic

rhythmic streams of notes/rests in each measure. For

music with one or two rhythmic streams on a staff, the

assignment is relatively straightforward. Three or more

rhythmic layers in the music can be difficult to automati-

cally interpret. Graphical music editors typically have

four independent layers that can be overlaid on a single

staff. SCORE does not have a formalized system for

keeping track of rhythmic layers (although there is an

informal system in the Windows version of the SCORE

editor), so occasionally manual intervention is necessary

to assign music to different layers. Figure 5 illustrates

the layer interpretation of the music from Figure 1. Since

there are no more than two layers on any staff, automatic

recognition of the layers is unambiguous. The first layer

(as defined in most graphical music editors) is the highest

pitched music in the measure with stems pointing up-

wards if there is a second layer below it. In Figure 5, the

second layers in measures 5 and 6 are highlighted in red

(or gray in black-and-white prints). The circled rest on

the bottom staff of measure 4 presents an interpretational

ambiguity: either the bottom layer can be considered to

drop out at the rest, or the rest can be interpreted as

shared between the two layers on the bottom staff. When

extracting orchestral parts in such situations, both parts

would share the rest, and the extracted parts would both

display the rest.

Figure 5. Automatic layer identification, 2nd layer in red.

2.6 Slur/Tie differentiation

After layers have been identified, the final complex step

is to distinguish between slurs and ties. For monophonic

parts this is straightforward, but in polyphonic parts there

are many corner cases to deal with, making 100% correct

distinctions difficult to achieve. SCORE has a weak im-

plicit labeling system to differentiate between ties and

slurs, but this cannot be depended upon on since the sys-

tem is primarily intended for graphical offsets of slurs

rather than differentiation between slurs and ties. After

ties have been identified, pitch identifications need to be

reconsidered since tied notes without accidentals will

take their accidental from the starting note of a tied

group.

Figure 6. Disjunct ties in Beethoven op. 57, Presto, mm 20-24.

 Additionally difficulties arise in both identifying and

representing ties that do not connect rhythmically adja-

cent notes. In particular notated arpeggios such as shown

in Figure 6 bypass notating intermediate notes in a slur

group, and instead have a single tie connecting the first

and last notes in the tie group. Music editors such as

MuseScore/Sibelius/Finale cannot handle such cases, and

it is also difficult to automatically identify such cases in

OMR or SCORE data.

20

3. DATA CONVERSION FROM SCORE

SCORE uses a two-dimensional description of musical

notation, and its data can be serialized into any order

since items’ positions on the page are independent of

each other. Nearly all other music-notation formats im-

pose a sequential structure onto their data, typically

chopping up the score into parts, measures, and then

layers, which form monophonic chunks that are serialized

in different ways. This section presents some of the con-

versions available with sample programs accompanying

the scorelib library.

Figure 7 illustrcates three serialization methods within

measures that are commonly found in music-notation

data formats. In Humdrum data, notes are always serial-

ized by note-attacks times—in other words, all notes

from each part/layer played at the same time are found

adjacent to each other in the data. This configuration is

also true of Standard MIDI Files in type-0 arrangement,

where all notes are presented in strict note-attack order.

Most other data formats will organize music into horizon-

tal/monophonic sequences by measure rather than by

vertical/harmonic slices. MEI chops up a score into a

sequence of measures/parts/staves, and finally the staves

are segmented into a parallel sequence of monophonic

layers. MuseData and MusicXML use the same serializa-

tion technique within a measure, but layer segmentations

are not as hierarchical as MEI. MusicXML has two ways

of serializing measures in a score (partwise and time-

wise), but these methods do not affect serialization within

a measure.

Figure 7. Measure-level serialization schemes in sequential data for-

mats.

In addition to serialization, an important distinction

between data formats is the presence or lack of layout

information. SCORE data always contains explicit and

complete layout information for displaying musical nota-

tion, while other data formats have a range of layout

description capabilities. The complexity of the notation

will determine the necessity of preserving layout infor-

mation when translating to other file formats. Simple

music can automatically be re-typeset without problems;

however, complex music is difficult to automatically

typeset with a suitable readability quality, and usually

human intervention is required to maximize readability in

complex notational situations. Many music-notation

editing programs focus on ease of manipulation for the

musical layout and try to minimize the need for manual

control. Likewise, they internally hide the layout infor-

mation that would be necessary to convert into layout

explicit representations such as SCORE data.

Automatic layout will always fail at some point, since

the purpose of music notation is to convey performance

data to a musician in the most efficient means necessary.

Typesetting involves lots of rules and standards, but fre-

quently the rules will need to be broken, or conflicting

rules will override each other. Any confusion in the

layout decreases the effectiveness of the notation, which

a professional typesetter can deal with on a cognitive

level much higher than a computer program. Being able

to preserve the precise musical layout of SCORE (or

OMR) data is very useful, since this can retain human-

based layout decisions.

Figure 8 : SCORE PostScript output (top) and SCORE data converted

into Dox data in a screen-shot of the Dox editor (bottom).

3.1 SCORE to Dox

Figure 8 shows graphical output from a SCORE Post-

Script file above a conversion displayed in the Dox music

editor written by David Packard. The Dox data format

encodes explicit layout information in a header for each

system, followed by a listing of symbolic data for each

part in the system. For each system measure, a grid in-

struction specifies a spatial distance between times in the

composite rhythm for the system. These grid points can

be displayed as red vertical lines within the editor as

show in the screen capture at the bottom of Figure 8.

These gridlines are calculated directly from the horizontal

placement (P3) of notes when converting from SCORE

data. Within Dox data, the absolute horizontal positions

are converted into incremental distances from the previ-

ous composite rhythm time in the measure.

Unlike SCORE data, the Dox format separates layout

information from symbolic musical elements. Figure 9

shows some sample Dox data illustrating this property.

At the start of the data for each system, a header gives

layout information. The bars directive controls the abso-

lute positions of the measures within the system, and each

grid directive controls the spacing between composite

rhythm positions within each measure. For example

“147x13” at the start of the grid for the first measure

means that the first beat is 147 spatial units from the start

of the measure (relatively wide, to allow for the system

clef and key signature to be inserted), then the next posi-

tion in the composite rhythm sequence is a sixteenth note

later, and this is placed 13 units after the notes of on the

first beat.

The Dox editor manipulates note spacing by adjusting

these grid points, so notes across multiple staves in a

system sounding at the same time are always vertically

aligned. Vertical positioning of staves as well as the size

of staves are also stored in Dox data, so page layout can

be preserved when converting from SCORE data.

Figure 9 : Scanned notation (top staff) with matching layout of music in

Dox editor (bottom staff). System layout is highlighted in gray below

the staves, along with symbolic notation in Dox format for the staff.

3.2 SCORE to Humdrum

As a sample of a primarily symbolic data format, this

section gives an example conversion result into the Hum-

drum data format, which is used in computational music

analysis applications. This data format typically contains

no layout information since the primary focus is on en-

coding pitch, rhythm and meter for analysis, and not on

layout for printing. The Humdrum format is compact and

allows the musical content to be read directly from the

representation more so than any other symbolic digital

representation of musical notation that encode parts seri-

ally rather than in the parallel fashion of Humdrum.

The following text lists a conversion from the SCORE

data of Figure 1 into Humdrum syntax. Each staff is

represented by column of data (spines), with staff layers

causing splits of the spines into sub-columns. Each line

of data represents notes sounding at the same time, so the

rows represent the composite rhythm of all parts, which is

similar to the rhythm sequence of grid directives in Dox.

**kern **kern

*staff2 *staff1

*clefF4 *clefG2

*k[b-e-a-] *k[b-e-a-]

*M2/4 *M2/4

=1- =1-

2r 4e-/ 4g/

. 4B-/ 4f/

=2 =2

4.CC/ 4.C/ 4.G/ 4.e-/

8C/ 8E-/ (16.e-/LL

. 32a-/JJk)

=3 =3

8BB-/ 8En/L 8g/L

8BB-/ 8E/ (16.g/L

. 32dd-/JJk)

8AAn/ 8F/ 8cc/L

8AA-/ 8F#/J (16.cc/L

. 32ddn/JJk)

=4 =4

*^ *^

(8G/L 4.GG\ (8.ee-/L 8e-\L

8An/ . . 8e-\ 8f#\

. . 16cc/k .

8Bn/J) . 8bn/J) 8d\ 8g\J

8r 8r (16gg\LL 8r

. . 16eee-\JJ) .

*clefG2 *clefG2 * *

*v *v * *

=5 =5 =5

*^ * *

8g/L 4.G\ 8.eee-/L 8ee-\L

8an/ . . 8ee-\ 8ff#\

. . 16ccc/Jk .

8bn/ . 8bbn/L 8dd\ 8gg\

8b-/J 8g\ 8bb-/J 8dd\ 8gg\J

*v *v * *

* *v *v

*- *-

Humdrum syntax is a generalized system, so if layout

information needs to be preserved, an additional column

of for horizontal positions could be added. This would

duplicate the functionality of the grid directives in Dox

files. Other formats that do not encode layout infor-

mation would be converted in a similar manner as the

conversion process from SCORE into Humdrum. Data

formats in this category include MIDI, ABC, LilyPond,

and Guido Music Notation.

3.3 SCORE to musicXML

MusicXML is primarily used as a symbolic music format,

but has a mostly complete system for specifying layout in

notation. In contrast to the Dox format, the layout pa-

rameters are interleaved within the data, typically being

given as element attributes. Figures 10 and 11 illustrate

conversions from SCORE into musicXML for a work by

Dufay generated by the score2musicxml converter. These

two figures highlight the page layout information that can

be preserved when translating between SCORE and mu-

sicXML. Both figures have the same system break loca-

tions, staff scalings and system margins. While mu-

sicXML 3.0 has the capability to specify the horizontal

layout of notes and measures, this information is current-

ly stripped out of the data when importing into the most

recent version of Finale (2014).

3.4 SCORE to MEI

From SCORE’s point of view, conversion into mu-

sicXML and to MEI are similar, and the score2mei con-

verter was initially adapted from the musicXML conver-

sion program. MEI data is more hierarchical than mu-

sicXML data, with elements such as beams and chords

stored in a tree structure, while musicXML attaches these

features to a flat listing of the notes. Figure 12 demon-

strates the different encoding methods for a chord in

SCORE, MEI and MusicXML. MEI wraps individual

notes within a <chord> element, while musicXML marks

secondary notes of the chord with a Boolean <chord/>

child element.

Figure 10 : SCORE PostScript output matching to musicXML transla-

tion shown in Figure 11.

Figure 11 : Screen shot of a musicXML conversion in the Finale music

editor. During conversion the rhythmic values of the converted score

have been doubled to match the rhythmic values of the original 15th

century score.

Figure 12. A chord in SCORE format with translations into MEI and

MusicXML below.

3.5 SCORE and MuseData

The MuseData printing system uses two data formats:

one for symbolic data encoding, and another for explicit

layout. Typically music is encoded in the symbolic for-

mat that is then compiled into the format with specific

layout for interactive editing.
6
 MusicXML is structurally

based on the symbolic for of MuseData. The compiled

layout-specific format is analogous to SCORE data. A

useful property of the MuseData printing system is access

to both the high-level symbolic representation as well as

the low-level graphical representation.

3.6 SCORE and SVG

Due to SCORE data’s graphical nature, converting it into

images is less complex than generating images from

purely symbolic representations (outside of the intended

software for a representation, of course). While each

graphical element in SCORE can be placed independent-

ly at a pre-determined position in an image, software

processing symbolic formats must first calculate a graph-

ical layout, and unlike MuseData this layout representa-

tion is typically inaccessible as an independent data for-

mat. While SCORE software does not have native export

to SVG images, minimal processing of its EPS output can

produce SVG images.
7
 Analytic overlays on the notation

image can be aligned to the image using the layout in-

formation from the original SCORE data.

Since SCORE data is compact, it can be stored within

an XML files. For example the complete SCORE data

for the music of Figure 1 can be found in an SVG image

of the incipit used on the Wikipedia page for Beethoven’s

26
th

 piano sonata.
8
 At the bottom of the SVG image’s

source code, the SCORE data used to create the SVG

image is embedded within a processor instruction using

this syntax:

 <?SCORE version=“4”

 SCORE data placed here

 ?>

Embedding the source code for creating the image al-

lows the data to be used to regenerate an SVG image to

fix notational errors or to prepare a new layout, and the

embedded data can also be used to generate additional

analytic markup.

Further samples of SCORE data can be found in the

GitHub repository for scorelib.
9
 Additional SCORE data

samples can be found on IMSLP as attachments to PDFs

of music that the author has typeset in SCORE.
10

6
 The batch-processing version of the MuseData printing

system (http://musedata.ccarh.org) can be used to

generate both PostScript output and the intermediate layout

representation called Music Page Files (MPG).
7
 Using the open-source converter https://github.com/-

thwe/seps2svg
8 http://en.wikipedia.org/wiki/Piano_Sonata-

_No._26_(Beethoven)
9
 https://github.com/craigsapp/scorelib/tree/-

master/data
10

 http://imslp.org/wiki/User:Craig

4. CONCLUSIONS

SCORE is an important historical data format for com-

puter-based music typesetting. Understanding its graph-

ical representation system is particularly useful for pro-

jects in OMR, where interpreted graphical symbols must

be organized in a similar process as converting from

SCORE into other data formats. In addition, the SCORE

representation system should be studied by projects writ-

ing automatic music layout of purely symbolic data.

SCORE is primarily used by professional typesetters due

to its high-quality output and the degree of control af-

forded to the typesetter. Using the scorelib software

allows SCORE data to be more easily converted into

other musical formats, usually with minimal manual

intervention and exactly preserving the original layout.

http://musedata.ccarh.org/
https://github.com/-thwe/seps2svg
https://github.com/-thwe/seps2svg
http://en.wikipedia.org/wiki/Piano_Sonata-_No._26_(Beethoven)
http://en.wikipedia.org/wiki/Piano_Sonata-_No._26_(Beethoven)
https://github.com/craigsapp/scorelib/tree/-master/data
https://github.com/craigsapp/scorelib/tree/-master/data
http://imslp.org/wiki/User:Craig

